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Abstract: Fractures in the form of micro cracks are commonly found in natural rocks. A rock behaves in a com-
plex way due to fracture; in particular, the anisotropic strength of a rock material is significantly influenced by the
presence of these fractures. Therefore, it is essential to understand the failure mechanism of a fractured rock. In
this study, a fractured rock is formulated in terms of fabric tensor based on geometric and mechanical simplifica-
tions. In this way, position, density and shape of fractures can be determined by the fabric tensor so that rocks
containing multi-fractures can successfully be modeled. Also an index to evaluate the degree of anisotropy of a
fractured rock is proposed Hence, anisotropic strength of a rock containing fractures under uniaxial compression
condition is estimated through a series of numerical analyses for the multi-fractured model. Numerical investiga-
tions are carried out by varying the fracture angle from 0° to 90 ° and relationship between uniaxial compression
strength and the degree of anisotropy is investigated. By comparing anisotropic strength of numerical analysis
with analytic solution, this study attempts to understand the failure mechanism of rock containing fractures.

1. Introduction

Fractures are commonly found in natural rocks. These fractures complex the behaviour of rock masses; in par-
ticular, anisotropic strength and displacement of a rock material is significantly influenced by the presence of these
fractures. For rock masses containing fractures, orientation and density of fractures influences anisotropic strength
and displacement of rock masses. Hence it is essential to understand how a fractured rock fails.

Most of studies on predicting the behaviour of rock masses often assume that the medium is isotropic or predict
the behaviour of rock mass containing joint. In this study, when a rock has multi-fractures, a fractured rock is pre-
sented in terms of fabric tensor based on geometric and mechanical simplifications and rocks containing multi-
fractures are numerically modeled. In order for investigation the influence of orientation and density of fractures on
compressive strength of rock, a numerical method is used.

2. Literature survey

Strength of rock masses containing discontinuities

The strength of rock masses containing discontinuities is influenced by the orientation of discontinuities (Jaeger,
1960). Therefore, the orientation of discontinuities needs to be understood for predicting anisotropic strength of
rock masses (Lee, 2001).

Fig. 1 illustrates original Jaeger’s criterion, in which there are two types of failure, such as a curved line to be
slip along the discontinuity and a straight line to be failure of the intact rock. The original Jaeger’s criterion as-
sumes that rock masses are isotropic, and when orientation of discontinuity is 0° and 90°, the values of rock mass
strength are identical. :

However, many experimental studies show that these values are not identical. Therefore, the extended Jaeger’s
criterion divides the orientation into 0° and 90° and calculates the strength of rock masses separately (Donath,
1964; McLamore and Gray, 1967; Tien and Kuo, 2001).

Fabric tensor

Geometrical properties of discontinuities in rock masses can be described in terms of position and density, shape
and dimension and orientation of discontinuities. These geometrical properties of discontinuities are expressed by
the fabric tensor, such as equations (1) and (2) (Oda, 1984, 1984).
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Fig. 1. Strength variation by original and extended Jaeger's criteria (after Tien and Kuo, 2001).
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where n is normal vector of a fracture, ¢, (or e ) is base vector, 0" is the angle between n and e (or e;), ™ is the

fracture length and m® is number of fracture in a rock. As fabric tensor is symmetric (F3=Fj), Fy has three princi-
pal values, namely Fy, F, and F;. Also I is proposed as an index to evaluate the degree of anisotropy of Fj; as fol-
lows

T={(F-F) +(F,-F) +(F-F) . 3)

3. Numerical analysis

In this study, FLAC is used to estimate a compressive strength of rock containing multi-fractures, and Fig. 2 il-
lustrates a basic numerical model of 60 by 120mm with the fracture length of 12mm. The properties used in
simulation are listed in Table 1.

Table 1. Properties of a rock material.

Cohesion Tensile strength Friction angle Elastic modulus Poisson’s ratio

7.5 MPa 4.2 MPa 50° 33GPa 0.27

The effect of fracture angle on the uniaxial compressive strength

Numerical investigations are carried out by varying the fracture angle from 0° to 90 °. Fig .3 illustrates the stress-
strain curve of a fracture rock and Table 2 summarizes uniaxial compressive strength that is determined by the
stress-strain curve. The uniaxial compressive strength of rock with fractures decrease from 30° to 60°, and increase
after 60°.

The uniaxial compressive strength of rock is defined by the stress when a rock is entirely destructed.
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Fig. 2. A fractured rock sample used for numerical experiment.
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Fig. 3. Stress-strain curves for different fracture angle (f3). Fig. 4. Compression strength varying with fracture angle

Table 2. The uniaxial compressive strength corresponding to model with different angles.

Fracture angle 3 (°) 0 15 30 45 60 75 90

Compressive strength (MPa) 21.5 25.5 25.9 234 18.1 29.5 40.5

Fig. 4 illustrates an anisotropic strength curve by the numerical and theory analyses. Both numerical and theory
analyses show different strength values when the fracture angle is 0°and 90°. But minimum strength appears from
different fracture angles. Although a difference exit in the minimum strength values, on the whole, both curves be-
have in a similar way qualitatively.

The effect of fracture length on the uniaxial compressive strength

In order for investigation the influence of fracture length, in which the fracture angle is fixed at 45°, on the com-
pressive strength of a rock, numerical analyses are carried out by varying the fracture length. Table 3 and Fig. 5
illustrate the stress-strain curve and uniaxial compressive strength by fracture length.

When fractures are in a rock, a density of fractures, p, is defined by equation (4).

Area of fractures

p= C))

Area of rock
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Numerical investigations are carried out by varying the fracture angle from 0° to 90°. Table 2 summarizes uniax-
ial compressive strength determined by the stress-strain curve. The uniaxial compressive strength of rock with frac-
tures decrease from 30° to 60°, and increase after 60°.

Table 3. Compression strength corresponding to model with different length.

Fracture length (mm) 0 6 12 24 42 60 78
Fracture density (x10) 0 0.83 1.67 333 5.83 8.33 10.83
Compressive strength 3050 | 2812 | 2713 | 2155 5.69 3.80 1.26
(MPa)
Degree of anisotropy T’ 0 0.0018 0.0071 0.0283 0.0866 0.1768 0.2987

Table 3 shows that the more fracture length increases, the more a rock compressive strength decrease. Also, T
increases with increasing the fracture length. Therefore, it can be drawn that the compressive strength of a rock de-
creases, as I increases.

40 40
30 — 30 —
= J = E
& £
= 20 - %‘20— ot
4 —&—— No fracture o ¢
% —&— L=6mm 7 —&— No fracture
= L’ii“"“ —S— p=0.00167
- —— L= —
10 ®— i i2mm 10 —f=3— p=0.00333
—E— 1L=60mm ——— p=0.005
—k— L=78mm —@— p=0.00667
0 T T T T 1] —T1T T T p § T T
0 0.0004 0.0008 0.0012 0.0016 1] 0.0004 0.0008 0.0012 0.0016
Strain Strain

Fig. 5. Stress-strain curves for different fracture length. Fig. 6. Stress-strain curves for different fracture density.

The effect of fracture density on uniaxial compressive strength

Numerical investigations are carried out by varying number of fractures, fixing the fracture angle and length at
45° and 12mm, respectively. Fig. 6 and Table 4 show the stress-strain curve and the uniaxial compressive strength
of numerical results.

Table 4. The compression strength corresponding to model with different fracture number.

Number of fractures 0 1 2 3 4
Fracture density 0 0.00167 0.00333 0.00500 0.00667
Compressive strength 193 16.29
(MPa) 30.58 27.13 13.39 31 .
Degree of anisotropy I’ 0 0.0071 0.0141 0.0212 0.0283
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It is described in Table 4 that the more number of fracture increase, the more the compressive strength of
strength decrease (or I' increase). Hence the numerical results indicate that the compressive strength of a rock de-
crease as the degree of anisotropy increases.

Under identical density condition, in order for investigation the influence of fracture number on the compressive
strength of a rock, numerical analyses are carried out by varying the fracture number, fixing the fracture angle and
density at 45°and 0.0033. Table 5 and Fig. 7 show the stress-strain curve and the uniaxial compressive strength of
numerical results.
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Fig. 7. Stress-strain curves for different number of fractures maintaining the same fracture density.

Table 5. The compressive strength corresponding to model with equal density.

Number of fractures 1 2 3

Fracture length (mm) 24 12 8
Fracture density 0.0033 0.0033 0.0033
Compressive strength (MPa) 21.55 23.39 24.75
Degree of anisotropy I 0.0283 0.0141 0.0094

Table 5 shows that in spite of equal density of fractures, the.more number of fracture increase, the more the
compressive strength decrease (or I' increase). It is founded that bridge(or intact rock) between fractures is one of
the most important factors, influencing the strength of a rock.

4. Conclusions

In this study, a fractured rock is presented in terms of fabric tensor. Thus position, density and shape of fractures
are determined by the fabric tensor so that rocks containing multi-fractures is modeled by numerical method. The
significant findings are as follows

(1) By comparing anisotropic strength curve of numerical analysis and analytic solution, it is shown that the fail-
ure mechanism of rock containing fractures and rock masses containing discontinuities are similar.

(2) On the contrary to the previous conclusion, a rock containing fractures is influenced by intact rock between
fractures. Under the identical fracture density, bridge(or intact rock) between fractures improves the compressive
strength of rock. This means that intact rock between fractures is one of the most important factors that have influ-
ence on the strength of rock.
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(3) The uniaxial compressive strength increases as the degree of anisotropy decreases, when the orientation of
fractures in a rock is identical. This result indicates that the fabric tensor represents a relative strength of fractured
rocks by T,
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