• Title/Summary/Keyword: undruggable target

Search Result 2, Processing Time 0.016 seconds

Chemically Induced Cellular Proteolysis: An Emerging Therapeutic Strategy for Undruggable Targets

  • Moon, Seonghyeon;Lee, Byung-Hoon
    • Molecules and Cells
    • /
    • v.41 no.11
    • /
    • pp.933-942
    • /
    • 2018
  • Traditionally, small-molecule or antibody-based therapies against human diseases have been designed to inhibit the enzymatic activity or compete for the ligand binding sites of pathological target proteins. Despite its demonstrated effectiveness, such as in cancer treatment, this approach is often limited by recurring drug resistance. More importantly, not all molecular targets are enzymes or receptors with druggable 'hot spots' that can be directly occupied by active site-directed inhibitors. Recently, a promising new paradigm has been created, in which small-molecule chemicals harness the naturally occurring protein quality control machinery of the ubiquitin-proteasome system to specifically eradicate disease-causing proteins in cells. Such 'chemically induced protein degradation' may provide unprecedented opportunities for targeting proteins that are inherently undruggable, such as structural scaffolds and other non-enzymatic molecules, for therapeutic purposes. This review focuses on surveying recent progress in developing E3-guided proteolysis-targeting chimeras (PROTACs) and small-molecule chemical modulators of deubiquitinating enzymes upstream of or on the proteasome.

Drug Discovery Perspectives of Antisense Oligonucleotides

  • Yeonjoon Kim
    • Biomolecules & Therapeutics
    • /
    • v.31 no.3
    • /
    • pp.241-252
    • /
    • 2023
  • The era of innovative RNA therapies using antisense oligonucleotides (ASOs), siRNAs, and mRNAs is beginning. Since the emergence of the concept of ASOs in 1978, it took more than 20 years before they were developed into drugs for commercial use. Nine ASO drugs have been approved to date. However, they target only rare genetic diseases, and the number of chemistries and mechanisms of action of ASOs are limited. Nevertheless, ASOs are accepted as a powerful modality for next-generation medicines as they can theoretically target all disease-related RNAs, including (undruggable) protein-coding RNAs and non-coding RNAs. In addition, ASOs can not only downregulate but also upregulate gene expression through diverse mechanisms of action. This review summarizes the achievements in medicinal chemistry that enabled the translation of the ASO concept into real drugs, the molecular mechanisms of action of ASOs, the structure-activity relationship of ASO-protein binding, and the pharmacology, pharmacokinetics, and toxicology of ASOs. In addition, it discusses recent advances in medicinal chemistry in improving the therapeutic potential of ASOs by reducing their toxicity and enhancing their cellular uptake.