• Title/Summary/Keyword: undrained test

Search Result 245, Processing Time 0.02 seconds

An Analysis of Flat DMT Penetration Based on a Large strain Formulation (대변형을 고려한 flat DMT의 3차원 관입 해석)

  • Byeon, Wi-Yong;Lee, Seung-Rae
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.1
    • /
    • pp.67-76
    • /
    • 2007
  • Flat DMT penetration was analyzed using a finite element model based on a large strain formulation. The ABAQUS/Explicit, a commercial finite element method, was used to study the flat DMT penetration in soils. Then, because the very large mesh distortion occurred due to the penetration of flat DMT, the adaptive meshing technique was utilized to maintain a high quality mesh configuration. The undrained shear strength obtained from the flat DMT is estimated using only the horizontal stress index ($K_{D}$) and so it became necessary to examine using the analysis results obtained from the penetration of the flat DMT. Analysis results show that in normally consolidated region of $K_{D}=2$, the results obtained from the correlations proposed by Marchetti show good agreement with those estimated from the finite element method. The present analysis also shows that in overconsolidated region of $K_{D}>2$, the results obtained from the relationships proposed by Kamei and Iwasaki show good agreement with those provided by the penetration analysis.

Undrained Shear Behavior of Cemented Sand (고결모래의 비배수 전단거동)

  • Lee, Moon Joo;Choi, Sung Kun;Hong, Sung Jin;Lee, Woo Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3C
    • /
    • pp.181-190
    • /
    • 2006
  • The behavior of artificially cemented sands were investigated by undrained triaxial test of isotropically consolidated sample. The cementation were induced by gypsum that is generally used for the aitificial cementation of sands. The gypsum of 5~20%(sand weight) were included in the sand and cured in the mold under the overburden pressure 55kPa. The yielding strength and stiffness of cemented sand were increased as the degree of cementation. And the dilation of sand was restricted by the cementation bonds, but after breakage of the bonds, it was increased more abrupt than the uncemented sands. The effective stress path showed that the aspects of effective pore water pressure were changed as the degree of cementation and the relative density. The effective stress ratio of cemented sand in the phase transformation line and the failure line were changed by the cementation. Generally the behavior of cemented sand more influenced by the degree of cementation than the relative density.

Utilizing the GOA-RF hybrid model, predicting the CPT-based pile set-up parameters

  • Zhao, Zhilong;Chen, Simin;Zhang, Dengke;Peng, Bin;Li, Xuyang;Zheng, Qian
    • Geomechanics and Engineering
    • /
    • v.31 no.1
    • /
    • pp.113-127
    • /
    • 2022
  • The undrained shear strength of soil is considered one of the engineering parameters of utmost significance in geotechnical design methods. In-situ experiments like cone penetration tests (CPT) have been used in the last several years to estimate the undrained shear strength depending on the characteristics of the soil. Nevertheless, the majority of these techniques rely on correlation presumptions, which may lead to uneven accuracy. This research's general aim is to extend a new united soft computing model, which is a combination of random forest (RF) with grasshopper optimization algorithm (GOA) to the pile set-up parameters' better approximation from CPT, based on two different types of data as inputs. Data type 1 contains pile parameters, and data type 2 consists of soil properties. The contribution of this article is that hybrid GOA - RF for the first time, was suggested to forecast the pile set-up parameter from CPT. In order to do this, CPT data and related bore log data were gathered from 70 various locations across Louisiana. With an R2 greater than 0.9098, which denotes the permissible relationship between measured and anticipated values, the results demonstrated that both models perform well in forecasting the set-up parameter. It is comprehensible that, in the training and testing step, the model with data type 2 has finer capability than the model using data type 1, with R2 and RMSE are 0.9272 and 0.0305 for the training step and 0.9182 and 0.0415 for the testing step. All in all, the models' results depict that the A parameter could be forecasted with adequate precision from the CPT data with the usage of hybrid GOA - RF models. However, the RF model with soil features as input parameters results in a finer commentary of pile set-up parameters.

Time-dependent behaviour of interactive marine and terrestrial deposit clay

  • Chen, Xiaoping;Luo, Qingzi;Zhou, Qiujuan
    • Geomechanics and Engineering
    • /
    • v.7 no.3
    • /
    • pp.279-295
    • /
    • 2014
  • A series of one-dimensional consolidation tests and triaxial creep tests were performed on Nansha clays, which are interactive marine and terrestrial deposits, to investigate their time-dependent behaviour. Based on experimental observations of oedometer tests, normally consolidated soils exhibit larger secondary compression than overconsolidated soils; the secondary consolidation coefficient ($C_{\alpha}$) generally gets the maximum value as load approaches the preconsolidation pressure. The postsurcharge secondary consolidation coefficient ($C_{\alpha}$') is significantly less than $C_{\alpha}$. The observed secondary compression behaviour is consistent with the $C_{\alpha}/C_c$ concept, regardless of surcharging. The $C_{\alpha}/C_c$ ratio is a constant that is applicable to the recompression and compression ranges. Compared with the stage-loading test, the single-loading oedometer test can evaluate the entire process of secondary compression; $C_{\alpha}$ varies significantly with time and is larger than the $C_{\alpha}$ obtained from the stage-loading test. Based on experimental observations of triaxial creep tests, the creep for the drained state differs from the creep for the undrained state. The behaviour can be predicted by a characteristic relationship among axial strain rate, deviator stress level and time.

Characteristic of Strength Increase in Clayey Soil by Electrokinetic Injection (동전기 주입에 의한 점성토의 강도증가 특성)

  • Kim, Ki-Nyun;Kim, Jong-Yun;Han, Sang-Jae;Kim, Soo-Sam
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.910-915
    • /
    • 2005
  • In this study a series of tests(bench scale test) are carried out for increasing in strength of clayey soil by EK-Injection method. In addition, the effects of strength increase in the treated sample are measured by operating the vane shear test device during 25 days at 5 days intervals in order to estimate the effect of ground improvement caused by diffusion. The test results show that the strength increase was developed approximately double to 7 times in comparison to initial shear strength, and outstanding strength increase was created as much as 7 times while injecting the sodium silicate and phosphoric acid in anolyte and catholyte. In addition, the measured shear strength with the influence of diffusion and reduction of water-content had a tendency to converge in constant value in proportion to elapsed time. As a result of this study, strength increment developed by the influence of EK-Injection and diffusion rather than the reduction of water-content were high as 1000% on average

  • PDF

Multi -Stage Triaxial Test under Constant Confining Pressure (일정구속압력 다단계삼축압축시험)

  • Kim, Sang-Gyu;Kim, Hyeon-Tae;Kim, Ho-Il
    • Geotechnical Engineering
    • /
    • v.9 no.2
    • /
    • pp.27-40
    • /
    • 1993
  • This paper proposes a new procedure carrying out a series of consolidated-undrained triaxial tests with a specimen. In this procedure high confining pressure applied to the specimen keeps constant during the test and each stage of consolidation can be controlled by partial drainage. With this procedure the test time is remarkably reduced by performing a series of triaxial tests with a single specimen. In order to verify the appliesbility of the procedure, standard triaxial compression tests and conventional multi -stage triaxial testy are performed for both undisturbed and disturbed samples and the results are compared with those of the proposed procedure. The comparison shows that strength parameters determined by the proposed procedure are well agreed with those of the other tests and thus it can be said that the procedure is very effective and practical in determining strength parameters.

  • PDF

Investigation of the effect of grain size on liquefaction potential of sands

  • Sonmezer, Yetis Bulent;Akyuz, Abdussamed;Kayabali, Kamil
    • Geomechanics and Engineering
    • /
    • v.20 no.3
    • /
    • pp.243-254
    • /
    • 2020
  • Due to the permanent damage to structures during earthquakes, soil liquefaction is an important issue in geotechnical earthquake engineering that needs to be investigated. Typical examples of soil liquefaction have been observed in many earthquakes, particularly in Alaska, Niigata (1964), San Fernando (1971), Loma Prieta (1989), Kobe (1995) and Izmit (1999) earthquakes. In this study, liquefaction behavior of uniform sands of different grain sizes was investigated by using the energy-based method. For this purpose, a total of 36 deformation-controlled tests were conducted on water-saturated samples in undrained conditions by using the cyclic simple shear test method and considering the relative density, effective stress and mean grain size parameters that affect the cumulative liquefaction energy. The results showed that as the mean grain size decreases, the liquefaction potential of the sand increases. In addition, with increasing effective stress and relative density, the resistance of sand against liquefaction decreases. Multiple regression analysis was performed on the test results and separate correlations were proposed for the samples with mean grain size of 0.11-0.26 mm and for the ones with 0.45-0.85 mm. The recommended relationships were compared to the ones existing in the literature and compatible results were obtained.

Comparison of Ultimate Bearing Capacity Formulas for Single Stone column in Bulging and General shear failure using in-situ test results (현장 시험치를 이용한 단일 쇄석다짐말뚝의 Bulging 및 General Shear Failure시의 극한지지력 제안식에 관한 비교 연구)

  • Chun, Byung-Sik;Kim, Won-Cheul;Seo, Deok-Dong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.4 no.2
    • /
    • pp.65-76
    • /
    • 2003
  • Stone column is a soil improvement method and can be applicable for loose sand or weak cohesive soil. Since the lack of sand, stone column seems one of the most adaptable approach for poor ground as a soil improvement technique. However, this method was not studied for practical application. In this paper, the bearing capacity of single stone column at the Gaduk, Ulsan and Gwangyang under the bulging and general shear failure mode were compared with those of the suggested formulas. Especially, a test result of single stone column at the Busan area by static load was compared with the bearing capacity of suggested formulas. The analysis results showed that there were not much bearing capacity differences among those suggested bearing capacity formulas. However, the bearing capacity by static load test was almost double of those with suggested formula. The result also showed that the undrained shear strength was the most important parameter for the bearing capacity estimation of stone column.

  • PDF

A Physical Model Test on the Behavior of Shield-tunnel Lining According to Drainage Conditions in Weathered Granite Soil (화강풍화토 지반에서 배수조건에 따른 쉴드터널 라이닝의 거동연구를 위한 모형실험)

  • Choi, Gou-Moon;Yune, Chan-Young;Ma, Sang-Joon
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.6
    • /
    • pp.71-82
    • /
    • 2015
  • Recently, due to the expansion of urban infrastructure for the citizen convenience, the shield tunnel construction has increased considering the civil complaints minimization and construction stability. Most shield tunnels are designed based on the assumption of the undrained condition that underground water does not inflow, but they are operated in the field as drained tunnels with drainage facility to drain underground water. Therefore, the drained condition needs to be considered in the shield tunnel design. It is also necessary to consider the weathered granite soil that is widely distributed throughout the country and consequently is encountered in most of construction sites. In this paper, the model test which can control total stress and pore water pressure and simulate the underground tunnel located in the weathered granite soil below ground water level is conducted. Total stress, pore water pressure and an inflow water into an inner pipe were measured using the testing device. Test results showed that the total stress in a drained condition was lower than in an undrained condition because pore water pressure decreased in a drained condition and an inflow water into an inner pipe was proportional to the loading stress in a drained condition. As a result, if a drained condition is considered in the shield tunnel design, the more economical design can be expected because of the stress reduction of the lining.

Effect of Fines Content on the Cyclic Shear Characteristics of Sand-clay Mixtures (점토혼합모래의 반복전단특성에 대한 세립분 함유율의 영향)

  • Kim, Uk-Gie;Hyodo, Masayuki;Ahn, Tae-Bong
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.1
    • /
    • pp.51-59
    • /
    • 2008
  • In this study, cyclic shear characterics of sand-clay mixtures were analyzed. In order to perform cyclic triaxial tests on sand clay mixtures, natural clays with activity and silica sand were mixed variously to reproduce soils with wide range of grain size compositions. Test specimens with various fines contents were prepared by the moisture compaction and pre-consolidation methods, while paying attention to the void ratio expressed in terms of the sand structure and clay structures, and undrained cyclic shear tests were performed. In the test results, cyclic shear strength decreased with increasing of sand granular void ratio below 20% of fine contents. When the granular void ratio of the test specimen exceeded the maximum void ratio of the silica sand, the clay matrix dominated the soil structure, and soil structures were not influenced by compaction energy. It was observed that, the matrix structure of the coarse particles has great effect on the undrained cyclic shear strength characteristics for sand-clay mixtures, and therefore, it is more appropriate to pay more attention to the density of the sand structure, rather than to the fines content.