• Title/Summary/Keyword: undrained test

Search Result 245, Processing Time 0.026 seconds

Vane Shear Test on Nakdong River Sand (베인 전단시험기를 이용한 낙동강모래의 마찰각에 관한 연구)

  • Park, Sung-Sik;Zhou, An;Kim, Dong-Rak
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.3
    • /
    • pp.463-470
    • /
    • 2016
  • A vane shear test (VST) is a simple testing method for determining an undrained shear strength of cohesive soils by minimizing soil disturbance. In this study, the VST was used to determine a shear strength of sand. Dry Nakdong River sand was prepared for loose and dense conditions in a cell and then pressurized with 25, 50, 75 or 100 kPa from the surface of sand. A vane (5 cm in diameter and 10 cm in height) was rotated and a torque was measured within sand. When a torque moment by vane and friction resistance moment by sand is assumed to be equalized, a friction angle can be obtained. When a vane rotates within clay, a uniform undrained shear strength is assumed to be acting on cylindrical failure surface. On the other hand, when it is applied for sand, the failure shape can be assumed to be an octagonal or square column. The relationship between measured torque and resistant force along assumed failure shapes due to friction of sand was derived and the internal friction angle of sand was determined for loose and dense conditions. For the same soil condition, a series of direct shear test was carried out and compared with VST result. The friction angle from VST was between 24-42 degrees for loose sand and 33-53 degrees for dense sand. This is similar to those of direct shear tests.

A Study on the Applicability of Modified Cam-clay Model in Low Plastic Clays (저소성 점토의 수정 Cam-clay 모델 적용성에 관한 연구)

  • Lee, Song;Kim, Tae-Hwoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.247-256
    • /
    • 2003
  • FEM analyses which are based on modified Cam-clay theory have been generally used in such cases as analyses of stability and displacement fur embankment construction on soft clays. However, the Modified Cam Clay Model can generate some problems in anisotropic stress conditions of field because the critical state theory has been developed through many laboratory tests in isotropic conditions. Thus, the applicability on the prediction of undrained shear strength and pore water pressure which was based on the critical state theory was evaluated by triaxial tests and numerical analyses in isotropic and anisotropic conditions. Used samples often come out in domestic area, together with general low plastic clays which are showing dilatant behavior in shearing process. They were evaluated by laboratory tests and FEM based on MCCM. From the results of test and numerical analysis, the predictions of undrained strength in low plastic clays well coincided with each other in both isotropic and anisotropic conditions. However, the generation of porewater pressure was often overestimated during undrained shearing in anisotropic conditions. The results can generate the errors in the prediction of stress path of field sites during loading such as construction of embankment on soft clays because the field is subjected to anisotropic conditions during loading.

Displacement Characteristics of Soft Ground by Embankment Construction (제방축조에 의한 연약지반의 변위특성)

  • Ahn, Kwangkuk;Bae, Wooseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.2
    • /
    • pp.29-39
    • /
    • 2007
  • In this study, the centrifugal tests were fulfilled to analyze the displacement characteristics caused by the embankment construction on soft ground. Embankment of height, undrained shear strength and with or without geotextile were selected to evaluate the displacement characteristics of soft ground by embankment. As a result, the replacement section without geotextile showed the parabola shape. The replacement section with geotextile showed the trapezoidal shape which represents the uniform settlements. The replacement angle is increasing nearly lineally with increasing the height of embankment and G-level. The position, where the maximum horizontal displacement occurred, was between $0.24H_0$ and $0.35H_0$ and was at $0.3H_0$ on the average. In the case of with and without geotextile, the relationship between the maximum settlement of ground(S) and maximum horizontal displacement(${\delta}_m$) was ${\delta}_m$ = 0.60S, ${\delta}_m$ = 0.54S, respectively.

  • PDF

Comparison of Tn-situ Characteristics of Soft Deposits Using Piezocone and Dilatometer (피에조 콘과 딜라토메터 시험을 이용한 연약지반의 현장특성 비교)

  • 김영상;이승래;김동수
    • Geotechnical Engineering
    • /
    • v.14 no.6
    • /
    • pp.45-56
    • /
    • 1998
  • In order to select a proper ground improvement technology and to assess the quality and rate of improvement in the soft deposits. it is essential to characterize in-situ properties of the soft marine clay layer that may have many thin silt or sand seams. In this paper, both piezocone and flat dilatometer tests were performed to characterize in situ properties of a marine clay. Both tests provided quite similar site classifications, and in both tests the penetration pore water pressure was the better indicator for the classification of marine clay layer, especially in which sand or silt seams are frequently interbedded. Undrained strengths determined by both the cone tip resistance and the excess pore water pressure measured from piezocone were very similar in clayey soil layers. And the untrained strength determined by dilatometer had an approximately average value of undiained strengths obtained from piezocone. In addition, the theoretical time factor that can consider pore pressure dissipation effect during cone penetration may provide a reliable estimation of the coefficient of consolidation, especially for a coastal site which includes many silt or sand fractions or seams.

  • PDF

A Prediction of the Behavior in Normally Consolidated Clay with Application of Isotropic Single Hardening Constitutive Model (등방단일경화구성모델에 의한 정규압밀점토의 거동 예측)

  • 홍원표;남정만
    • Geotechnical Engineering
    • /
    • v.12 no.2
    • /
    • pp.9-18
    • /
    • 1996
  • The results of a series of triaxial compression tests on remolded normally consolidated clay are compared with the predictions .by the isotropic single -hardening constitutive model, which incorporates eleven parameters. The parameters can be determined from undrained triaxial compression tests on isotropically consolidated specimens of remolded clay. The model with the determined parameters is applied to predict the stress-strain and pore pressure behaviors for untrained triaxial compresion tests on anisotropically consolidated specimens. Also the model is utilized to predict the stress strain and voltmetric strain behavior for drained triaxial compression tests on both isotropic and anisotropic specimens. The predicted response agrees well with the measured behavior for undrained triaxial compression tests on not only isotropically but also anisotroically but also anisotropically consolidated specimens. The initial volumetric strain is, however, predicted to be less than the measured value from drained triaxial compression tests, while the predicted volumetric strain close to failure is greater than the measured value. Nevertheless, it may be stated generally that overall acceptable predictions are produced. Therefore, the results of this study indicate that the applicability of the model on prediction of the behavior of normally consolidated clay is achieved sufficiently.

  • PDF

Characteristics of Pore Pressure and Volume Change During Undrained lending of Unsaturated Compacted Granite Soil (비배수전단시 불포화 다짐화강토의 간극압과 체적변형특성)

  • 김찬기;김태형;이종천
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.15-21
    • /
    • 2003
  • A series of triaxial compression tests were performed on samples of compacted granite soil in a modified triaxial cell that allowed separate control of pore air pressure ($U_a$) and pore water pressure ($U_w$) in order to examine the characteristics of pore pressure, volume change and stress-strain behavior during undrained loading conditions. Triaxial samples of unsaturated and saturated compacted granite soil, 50mm in diameter and 100mm in height, were prepared by compaction in a mould. These samples were tested at 3 different suction values (0.5, 1.0, 2.0 kgf/cm$^2$) for unsaturated compacted granite soil and at 3 different confining stresses (1.0, 2.0, 4.0 kgf/cm$^2$). Results showed that only effective cohesion increased with little variation of friction angle, according to matric suction.

Three Dimensional Deformation Behaviour of Compressible Sand (압축성(壓縮性) 모래의 3차원(次元) 변형거동(變形擧動))

  • Park, Byung Kee;Jeong, Jin Seob;Lim, Sung Chull
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.3
    • /
    • pp.107-113
    • /
    • 1990
  • A series of cubical triaxial tests with independent control of the three principal stresses were performed on a compressible sand. All specimens which were formed by depositing the fine sand loosely, were used. It was found that slope of the stress-strain curve increased with increased b value, and the major principal strain at failure first remains approximetely constant for b values smaller than about 0.3 for drained condition and 0.6 for undrained condition respectively, and thereafter decreases with increasing value of b. The test results showed that the direction of the strain increments at failure form acute angles with the failure surfaces for both the drained and undrained condition. The results are thus not in agreement with the normality criterion from classic plasticity theory. However, it was found that the projections of the plastic strain increment vectors on the octahedral plane are perpendicular to the faiure surface in that plane.

  • PDF

Evaluation of Engineering Properties of Clays Through Flat Dilatometer Tests (Flat Dilatometer 현장시험을 통한 점토 지반의 공학적 성질 추정)

  • Lee, Seung-Rae;Kim, Yun-Tae;Kim, Jun-Seok
    • Geotechnical Engineering
    • /
    • v.8 no.3
    • /
    • pp.23-36
    • /
    • 1992
  • The flat dilatometer(DMT) has been practically used as an in-situ test equipment. It is a simple, rapid and cost-effective tool to characterize the in-situ stress-strain-strength properties of various types of ground materials. However, the results of flat DMT should be validated with considerable data with respect to the known reference values for a specific site. In this study, the applicability of existing relationships which were established for other local deposits is verified by performing the tests in several clay deposits. To compare with the DMT results, field vane tests and cone penetration tests were also carried out in the same field as reference tests, and unconsolidated undrained tests, oedometer tests, and other fundamental material properties tests were conducted on the thin-walled tube samples in the laboratory. The results of the flat DMT combined with empirical correlations are used to estimate soil types, unit weights, coefficients of lateral earth pressure at rest, overconsolidation ratios, constrained moduli and undrained shear strengths of three clay local deposits. It was found that various geotechnical properties estimated from the flat DMT generally well agree with those from the reference tests.

  • PDF

Development of Modified Disturbed State Concept Model for Liquefaction Analysis (액상화 해석을 위한 수정교란상태개념 모델 개발)

  • Park, Keun-Bo;Choi, Jae-Soon;Park, Inn-Joon;Kim, Ki-Poong;Kim, Soo-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.3
    • /
    • pp.35-51
    • /
    • 2008
  • In this paper, the application of the DSC model to the analysis of liquefaction potential is examined through experimental and analytical investigations. For more realistic description of dynamic responses of saturated sands, the DSC model was modified based on the dynamic effective stress path and excess pore pressure development. Both static and cyclic undrained triaxial tests were performed for sands with different relative densities and confining stresses. Based on test results, a classification of liquefaction phases in terms of the dynamic effective stress path and the excess pore pressure development was proposed and adopted into the modified DSC model. The proposed methods using the original and modified DSC models were compared with examples with different relative densities and confining stresses. Based on the comparisons between the predicted results using the original and modified DSC models and experimental data, the parameters required to define the model were simplified. It was also found that modified model more accurately simulate initial liquefaction and dynamic responses of soil under cyclic undrained triaxial tests.

A Two Mobilized-Plane Model for Soil Liquefaction Analysis (액상화해석을 위한 두 개의 활성면을 가진 구성모델)

  • Park, Sung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.10
    • /
    • pp.173-181
    • /
    • 2006
  • A Two Mobilized-Plane Model is proposed for monotonic and cyclic soil response including liquefaction. This model is based on two mobilized planes: a plane of maximum shear stress, which rotates, and a horizontal plane which is spatially fixed. By controlling two mobilized planes, the model can simulate the principal stress rotation effect associated with simple shear from different $K_0$ states. The proposed model gives a similar skeleton behaviour for soils having the same mean stress, regardless of $K_0$ conditions as observed in laboratory tests. The soil skeleton behaviour observed in cyclic drained simple shear tests, including compaction during unloading and dilation at large strain is captured in the model. Undrained monotonic and cyclic response is predicted by imposing the volumetric constraint of the water on the drained or skeleton behaviour. This constitutive model is incorporated into the dynamic coupled stress-flow finite difference program of FLAC (Fast Lagrangian Analysis of Continua). The model was first calibrated with drained simple shear tests on Fraser River sand, and verified by comparing predicted and measured undrained behaviour of Fraser River sand using the same input parameters.