• Title/Summary/Keyword: underwater coating material

Search Result 5, Processing Time 0.022 seconds

Tensile Bond Characteristics between Underwater Coating Materials and Concrete Substrate (수중코팅제와 콘크리트 모재 간의 인장 부착 특성)

  • Kim, Min Ook;Jeong, Yeonung;Kang, Sung-Hoon;Moon, Juhyuk;Yi, Jin-Hak
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.6
    • /
    • pp.298-305
    • /
    • 2018
  • In this study, we investigated the tensile bond characteristics of underwater coating materials, in order to obtain useful information in support of repair work for marine and coastal concrete structures. Test variables included type of underwater coating, surface conditions of the concrete substrate, and environmental conditions. Pull-off tensile bond strength was measured at 24 h after applying underwater coatings to concrete substrates, in compliance with the procedures specified in ASTM C1583. Failure modes (coating, interface, and parent concrete) for each coating were identified through visual inspection, and comparisons were made based on measured bond strength. The tensile bond strength decreased underwater compared to that under dry conditions, while no significant effect of surface roughness on the measured bond strength was observed in underwater tests. Key aspects that need to be considered regarding selection and use of underwater coating materials for marine and coastal concrete structures were discussed.

Characteristics of the Surface Coating Layer of Ti5Si3 Intermetallic Compound Obtained by Shock Compaction and Reaction Synthesis Through Underwater Shock Compression (수중충격파를 이용하여 충격고화와 반응합성으로 제조된 Ti5Si3 금속간 화합물의 표면코팅 층의 특성에 관한 연구)

  • Lee, Sang-Hoon
    • Journal of Powder Materials
    • /
    • v.15 no.2
    • /
    • pp.101-106
    • /
    • 2008
  • The objective of the present study is to investigate the increase in the functional characteristics of a substrate by the formation of a thin coating layer. Thin coating layers of $Ti_5Si_3$ have high potential because $Ti_5Si_3$ exhibits high hardness. Shock induced reaction synthesis is an attractive fabrication technique to synthesize uniform coating layer by controlling the shock wave. Ti and Si powders to form $Ti_5Si_3$ using shock induced reaction synthesis, were mixed using high-energy ball mill into small scale. The positive effect of this technique is highly functional coating layer on the substrate due to ultra fine substructure, which improves the bonding strength. These materials are in great demand as heat resisting, structural and corrosion resistant materials. Thin $Ti_5Si_3$ coating layer was successfully recovered and showed high Vickers' hardness (Hv=1183). Characterization studies on microstructure revealed a fairly uniform distribution of powders with good interfacial integrity between the powders and the substrate.

Acoustic Properties of Rubber Compound for Anechoic Coating

  • Bae, Jong Woo;Kim, Won Ho;Ahn, Byung Hyun
    • Elastomers and Composites
    • /
    • v.53 no.4
    • /
    • pp.195-201
    • /
    • 2018
  • Three kinds of rubber compounds were prepared, and their underwater acoustical properties were investigated for anechoic coating. Dynamic mechanical properties of the rubber compounds were measured using a dynamic mechanical analyzer and extended to 100 kHz using time-temperature superposition. The sound speed, reflection coefficient, and attenuation constant were calculated. Silicone rubber showed the lowest reflection coefficient, and nitrile rubber showed the highest attenuation constant. The acoustic properties of nitrile rubber compounds with various compositions were investigated. The sound speed, reflection coefficient, and transmission coefficient of the nitrile rubber in the frequency range of 200-1000 kHz were measured in a water-filled tank.

Experimental Study on the Characteristics of Turbulent Wall Pressure Fluctuation Over Compliant Coatings (유연재 코팅 평판의 난류 변동압력 특성에 관한 실험적 연구)

  • Park, Kyung-Hoon;Lee, Seung-Jae;Shin, Ku-Kyun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.6
    • /
    • pp.293-300
    • /
    • 2007
  • Turbulent boundary layer over an underwater vehicle is formed when it moves underwater and wall pressure fluctuation within the turbulent boundary layer generates flow-induced noise by exciting the elastic hull of the underwater vehicle. One of the methods to reduce this flow noise is to attach a compliant layer on the surface of the vehicle. In order to observe the possibility of noise reduction in the water when the compliant layer treatments are applied on the surface, three types of specimens those are a bare steel plate, a steel plate coated with neoprene and a steel plate with polyurethane coating material are tested at various flow speeds in a low noise cavitation tunnel. This paper presents the results of measurements and analysis of wall pressure fluctuations which is a main source of flow noise, within the turbulent boundary layer on three specimens. Its results could be shown that about 10dB reduction of wall fluctuation pressure at high frequencies was achieved due to the dissipation of turbulent energy by the compliant coating while it makes the turbulent boundary layer thicker and changes the behavior of turbulent flow in the layer.

Role of Catechol in the Stability of Biocoating Materials in Wet Environment (바이오 코팅 재료의 습윤 안정성에 대한 카테콜 작용기의 역할)

  • Lee, Damjung;Lee, Kyueui
    • Applied Chemistry for Engineering
    • /
    • v.33 no.2
    • /
    • pp.216-221
    • /
    • 2022
  • Biocompatible polysaccharide coating technology can be a promising solution to overcome unexpected diseases caused by inflammatory reactions of metallic biomaterials (e.g., stent restenosis, etc.). However, due to their inherent hydrophilicity, it is difficult to maintain the coating layer for a long time in the physiological wet-environment. Herein, catechol functionalized hyaluronic acid was synthesized and introduced to the polymeric stent (polylactic acid) as the adhesive biocoating material. Surprisingly, even with the low degree of substitution of catechol (1.26%), a significant improvement in the underwater stability was observed, confirmed by capillary experiments and spectroscopic analysis. Our results may provide an insight into the positive role of catechol molecular adhesive group in the in-vivo stability of biocoating materials.