• Title/Summary/Keyword: underlay networks

Search Result 44, Processing Time 0.015 seconds

Hybrid Spectrum Sharing with Cooperative Secondary User Selection in Cognitive Radio Networks

  • Kader, Md. Fazlul;Asaduzzaman, Asaduzzaman;Hoque, Md. Moshiul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.9
    • /
    • pp.2081-2100
    • /
    • 2013
  • In this paper, we propose a cooperative hybrid spectrum sharing protocol by jointly considering interweave (opportunistic) and underlay schemes. In the proposed protocol, secondary users can access the licensed spectrum along with the primary system. Our network scenario comprises a single primary transmitter-receiver (PTx-PRx) pair and a group of M secondary transmitter-receiver (STx-SRx) pairs within the transmission range of the primary system. Secondary transmitters are divided into two groups: active and inactive. A secondary transmitter that gets an opportunity to access the secondary spectrum is called "active". One of the idle or inactive secondary transmitters that achieves the primary request target rate $R_{PT}$ will be selected as a best decode-and-forward (DF) relay (Re) to forward the primary information when the data rate of the direct link between PTx and PRx falls below $R_{PT}$. We investigate the ergodic capacity and outage probability of the primary system with cooperative relaying and outage probability of the secondary system. Our theoretical and simulation results show that both the primary and secondary systems are able to achieve performance improvement in terms of outage probability. It is also shown that ergodic capacity and outage probability improve when the active secondary transmitter is located farther away from the PRx.

Analysis of Energy Efficiency Considering Device-to-Device (D2D) Communications in Cellular Networks (셀룰러 네트워크에서 D2D 통신을 고려한 에너지 효율성 분석)

  • Jung, Minchae;Choi, Sooyong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.7
    • /
    • pp.571-579
    • /
    • 2013
  • This paper proposes an energy-efficient mode selection and power allocation scheme in device-to-device (D2D) communication system as an underlay coexistence with cellular networks. We analyze the energy efficiency which is defined as the summation of the energy efficiencies for all devices. The proposed scheme consists of two steps. First, we calculate the transmission power maximizing the energy efficiency for all possible modes of each device. Although the proposed power cannot maximize the system capacity, we prove that the proposed transmission power is the optimal power which maximizes the energy efficiency. In the second step, we select a mode which has the maximal energy efficiency among all possible mode combinations of the devices. Then we can jointly obtain the transmission power and the mode which can maximize the energy efficiency. The proposed scheme has the optimal performance with respect to the energy efficiency and outperforms the conventional schemes.

Feasibility of Massive Device-to-Device Communications in Cellular Networks (셀룰러 네트워크에서의 대규모 D2D 통신의 실현 가능성 연구)

  • Hwang, YoungJu;Sung, Ki Won;Kim, Seong-Lyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37B no.12
    • /
    • pp.1091-1101
    • /
    • 2012
  • Device-to-device (D2D) communication is expected to offer local area services with low transmit power and short link distance, even not via any infrastructures. These advantages will lead to the deployment of D2D systems in a massive scale, where the order of magnitude of D2D user density is higher than that of cellular user density. Network-assisted D2D systems, where D2D resources are managed by cellular networks, are unable to support the large number of D2D devices, due to the signaling overhead for control signals. In this case, no coordination can be an answer. This paper considers uncoordinated D2D systems, which is implemented with a number of D2D devices in a large scale. By analyzing the transmission capacity of D2D systems, we found a feasibility condition under which the uncoordinated D2D communications possibly coexist within cellular networks, sharing the uplink spectrum. In addition, we provide guidelines for the operational points of massive D2D communications, giving some knowledge about proper transmit power level and link distance of uncoordinated D2D.

Enhancement of the Detection Probability for Distributed Cooperative Spectrum Sensing using UWB as a Common Channel (UWB 신호채널을 사용한 분산협력 스펙트럼 센싱의 검출확률 향상)

  • Islam, A.B.M.Tariqul;Song, Ju-Bin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.7
    • /
    • pp.22-31
    • /
    • 2008
  • Cognitive radio should imply a proper sensing technique for detecting the presence of licensed users to identify the unused spectrum holes. Besides this, this information should also be used to opportunistically provide communication among secondary users. At the same time the performance of the primary user should not be declined by the secondary users. The detection of licensed users may be significantly difficult for shadowing effect. To prevail over this problem cooperative spectrum sensing, In which the combined observation information gained by multiple secondary users is employed to achieve higher performance of detection, has been inspected. However, the primary challenge of cooperative sensing lays in its ability to detect the presence of licensed user quickly and accurately. In this paper, we have used UltraWideBand (UWB) to detect the presence of licensed users and transmit the sensing information among the nodes of the network. UWB has the capability of transmitting data at a very high rate. It is unique in co-existence capability with narrow band systems. Here, we have shown that the detection probability of licensed user is improved by means of transmitting the spectrum sensing information via UWB. We also have analyzed the throughput of the proposed technique and compared the result with existing sensing method.