• Title/Summary/Keyword: underground water pressure

Search Result 238, Processing Time 0.021 seconds

Development of Standard Guideline for Water-leakage and Maintenance by parts of the Underground Structures in Multi-Family Housing - A Case Analysis of Water Leak Diagnosis - (공동주택 지하구조물의 부위별 표준 누수 진단 유지관리 지침 개발 - 누수 진단 사례 분석 -)

  • Kim, Soo Yeon;Lee, Jung Hun;Song, Je Young;Jang, Duk Bae;Oh, Sang Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.142-143
    • /
    • 2017
  • An analysis of the current water leak status of understand structure (underground parking lots, staircases, plumbing systems, water reservoirs, etc.) of multi-family housing in South Korea shows that water leaks are found from cracks in all areas of the underground structure caused by the degradation environment (water pressure by underground water, humidity, temperature, earth pressure, soil behaviour and vibration, etc.), which result in various problems, including mold, malodour, debonding of finishing materials, exfoliation, breakout, water leaks in electrical boxes, efflorescence, sedimentation of calcium hydroxide, decoloration, rusting, damages and pollution among others. Therefore, this study aims to analyse the current status of water leaks in underground structure and use the results as the basic data for developing a standard guideline for water leaks and maintenance by parts of the underground structure of multi-family housing.

  • PDF

Proposal on the Standard Water Leakage Diagnosis Manual of Leakage Type in Underground Structures Housing -Focused on Maintenance Plan - (공동주택 지하구조물 표준 누수 진단 매뉴얼 제안 - 유지관리 계획을 중심으로 -)

  • Kim, Soo Yeon;Lee, Jung Hun;Song, Je Young;Jang, Duk Bae;Oh, Sang Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.221-222
    • /
    • 2017
  • An analysis of the current water leak status of understand structure (underground parking lots, staircases, plumbing systems, water reservoirs, etc.) of multi-family housing in South Korea shows that water leaks are found from cracks in all areas of the underground structure caused by the degradation environment (water pressure by underground water, humidity, temperature, earth pressure, soil behaviour and vibration, etc.), which result in various problems, including mold, malodour, debonding of finishing materials, exfoliation, breakout, water leaks in electrical boxes, efflorescence, sedimentation of calcium hydroxide, decoloration, rusting, damages and pollution among others. Therefore, this study aims to analyse the current status of water leaks in underground structure and use the results as the basic data for developing a standard guideline for water leaks and maintenance by parts of the underground structure of multi-family housing.

  • PDF

Field Measurements and Numerical Analysis on the Efficiency of Water Curtain Boreholes in Underground Oil Storages (지하 유류비축기지 수벽공의 효율에 관한 현장계측 및 수치 해석 연구)

  • 이경주;이희근
    • Tunnel and Underground Space
    • /
    • v.8 no.2
    • /
    • pp.79-86
    • /
    • 1998
  • This study was performed to suggest to suggest suitable design conditions of water curtain system through analysis on pressure down in boreholes by hydraulic tests carried out I construction fields for underground oil storages. The influence by hydraulic conductivities of rock mass around boreholes on pressure down in boreholes was analysed. The relationship between array of boreholes and their pressure down was also analysed. Groundwater flow analysis on crude oil and LPG storages was carried out to evaluate results of field tests and to investigate distribution of hydraulic gradient in rock mass around cavern using finite difference method. As the results, hydraulic tests showed that pressure down in boreholes was inverse proportional to the hydraulic conductivity of surrounding rock mass. The rate of pressure down of boreholes was not influenced by water curtain system more than 20m over cavern and was proportional to installation interval of boreholes. The hydraulic gradient in rock mass around cavern was proportional to distance and interval of boreholes and its value was not satisfactory to oil tightness condition in case of no water curtain system.

  • PDF

Hydrostatic Pressure Resistance Performance Testing of Cement Mixed Siliceous Powder Waterproofing Coationgs (규산질계 분말형 도포방수재의 내투수성 성능평가 연구)

  • Park, So-Young;Kwon, Si-Won;Kim, Soo-Yeon;Kim, Byong-il;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.31-32
    • /
    • 2018
  • Lately, cement mixed siliceous powder waterproofing coating has been used as a waterproofing material in the wet environment condition of an underground concrete structure. Underground is exposed to environmental influences such as pressure of ground water, pressure of soil. However, the quality standard for pressure (water pressure, earth pressure) is not specified in the specification of the cement mixed siliceous powder waterproofing coating. Therefore, in this study, the permeability test was carried out based on the assumption that the durability should be verified in consideration of the environmental aspects of the material in actual field. As a result of the test, the permeability was generated from the inorganic single type material, but it was caused by the sealing failure and the test error, and the permeability was not generated in most of the materials. The results of this study will be analyzed by reviewing the physical properties of the material, and the research direction will be resumed.

  • PDF

A study for application plan of rational residual water pressure on the tunnel linings (터널 라이닝에 작용하는 합리적인 잔류수압 적용방안 검토)

  • Jung, Kuk-Young;Kim, Ji-Yeop;Kim, Ji-Hun;Moon, Hoon-Ki
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.6
    • /
    • pp.463-499
    • /
    • 2011
  • Control of ground water is one of the most important factors for long-term operation of tunnel because most tunnels are located under the ground water level. In case of a drainage tunnel, there is no pore water pressure on the lining when the drainage system is properly working. After long-term operation, however, residual pore water pressure can be developed on the lining due to the deterioration of the drainage system. In this study, the water pressure distribution under obstruction condition of drainage material and conduit on the tunnel is numerically investigated using the ICFEP program and compared with the current value being applied to the residual water pressure for rational application plan of residual water pressure on the tunnel linings.

A Stress Analysis of the Cast Iron Insert of Spent Nuclear Fuel Disposal Canister with the Underground Water Pressure Variation in a Deep Repository (지하수압 변화에 따른 심지층 핵폐기물 처분용기 내부 주철 구조물의 응력해석)

  • 강신욱;권영주
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.77-84
    • /
    • 2000
  • In this paper, the stress analysis of the cast iron insert of spent nuclear fuel disposal canister in a deep repository at 500m underground is done for the underground pressure variation. Since the nuclear fuel disposal usually emits much heat and radiation, its careful treatment is required. And so a long term safe repository at a deep bedrock is used. Under this situation, the canister experiences some mechanical external loads such as hydrostatic pressue of underground water, swelling pressure of bentonite, sudden rock movement etc.. Hence, the canister should be designed to withstand these loads. The cast iron insert of the canister mainly supports these loads. Therefore, the stress analysis of the cast iron insert is done to determine the design variables such as the diameter versus length of canister and the number and array type of inner baskets in this paper, The linear static structural analysis is done using the finite element analysis method. And the finite element analysis code, NISA, is used for the computation.

  • PDF

Infiltration characteristic of modified slurry and support efficiency of filter cake in silty sand strata

  • Sai Zhang;Jianwen Ding;Ning Jiao;Shuai Sun;Jinyu Liu
    • Geomechanics and Engineering
    • /
    • v.34 no.2
    • /
    • pp.125-138
    • /
    • 2023
  • To improve the understanding of infiltration characteristic of modified slurry and the support efficiency of filter cake in silty sand strata, the slurry infiltration (SI) and filter cake formation (FCF) were investigated in a laboratory apparatus. The water discharge and the excess pore pressure at different depths of silty sand strata were measured during SI. The relationship between permeability coefficient/thickness ratio of filter cake (kc/ΔL) and effective slurry pressure conversion rate of filter cake (η) were analyzed. Moreover, the SI and FCF process as well as the modification mechanism of CMC (carboxymethyl cellulose) were clarified. The experimental results indicate the formation of only external filter cake in the silty sand strata. The slurry particles obtain thicker water membrane after being modified by CMC, which blocks partial water path in filter cake and decreases the water discharge significantly. The silty sand excavated from tunnel face also contributes to the water discharge reduction. The kc of the external filter cake ranges from 3.83×10-8 cm/s to 7.44×10-8 cm/s. The η of the external filter cake is over 96%, which decreases with increasing kc/ΔL. A silty sand content within 10% is suggested during construction to ensure the uniformity of the filter cake.

Thermal Stress Analysis of Spent Nuclear Fuel Disposal Canister (심지층 고준위 핵폐기물 처분용기의 열응력 해석)

  • 하준용;권영주;최종원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.617-620
    • /
    • 1997
  • In this paper, the thermal stress analysis of spent nuclear fuel disposal canister in a deep repository at 500m underground is done for the underground pressure variation. Since the nuclear fuel disposal usually emits much heat and radiation, its careful treatment is required. And so a long term safe repository at a deep bedrock is used. Under this situation, the canister experiences some mechanical external loads such as hydrostatic pressure of underground water, swelling pressure of bentonite buffer, and the thermal load due to the heat generation of spent nuclear fuel in the basket etc.. Hence, the canister should be designed to designed to withstand these loads. In this paper, the thermal stress analysis is done using the finite element analysis code, NISA.

  • PDF

Evaluation of pore water pressure on the lining during tunnel operation (운영 중 터널에 작용하는 간극수압 평가기법)

  • Shin, Jong-Ho;Shin, Yong-Suk;Choi, Kyu-Cheol
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.4
    • /
    • pp.361-369
    • /
    • 2008
  • Control of ground water is one of the most important factors for long-term operation of tunnel because most of tunnel is located in the ground. In case of leakage tunnel, there is no pore water pressure on the lining when the drainage system is properly working. After long-term operation, however, the pore water pressure can be developed on the lining due to the deterioration of the drainage system. The increased pore water pressure on the lining is termed here as 'residual pore water pressure'. Residual pore water pressure can be measured by piezometer, but it is generally not allowed because of damages of drainage system. Therefore, an indirect and nondestructive method is required for evaluating the residual pore water pressure. Moreover, understanding of pore water pressure is needed during healthy operation of the lining. In this study, a new method for evaluation of pore water pressure on the lining during operation is proposed using theoretical and numerical analysis. It is shown that the method is particularly useful for stability investigation of pore water pressure on the lining during operation using theoretical analysis with normalized pore water pressure curve.

  • PDF

Analysis of permeability in rock fracture with effective stress at deep depth

  • Lee, Hangbok;Oh, Tae-Min;Park, Chan
    • Geomechanics and Engineering
    • /
    • v.22 no.5
    • /
    • pp.375-384
    • /
    • 2020
  • In this study, the application of conventional cubic law to a deep depth condition was experimentally evaluated. Moreover, a modified equation for estimating the rock permeability at a deep depth was suggested using precise hydraulic tests and an effect analysis according to the vertical stress, pore water pressure and fracture roughness. The experimental apparatus which enabled the generation of high pore water pressure (< 10 MPa) and vertical stress (< 20 MPa) was manufactured, and the surface roughness of a cylindrical rock sample was quantitatively analyzed by means of 3D (three-dimensional) laser scanning. Experimental data of the injected pore water pressure and outflow rate obtained through the hydraulic test were applied to the cubic law equation, which was used to estimate the permeability of rock fracture. The rock permeability was estimated under various pressure (vertical stress and pore water pressure) and geometry (roughness) conditions. Finally, an empirical formula was proposed by considering nonlinear flow behavior; the formula can be applied to evaluations of changes of rock permeability levels in deep underground facility such as nuclear waste disposal repository with high vertical stress and pore water pressure levels.