• Title/Summary/Keyword: underground storage

Search Result 402, Processing Time 0.03 seconds

Stablility Analysis of Underground Cold Storage Openings in Shallow Jointed Rocks (천심도 절리 암반 중에 굴착된 지하 냉장저장 공동의 안정성 해석)

  • 김호영;박연준;한공창;박의섭;선경건
    • Tunnel and Underground Space
    • /
    • v.7 no.1
    • /
    • pp.58-64
    • /
    • 1997
  • A pilot plant of underground cold storage for food has been excavated as a R&D program. For the stability assessment of underground cold storage opeinengs in shallow jointed rocks, three kinds of stability problems were analyzed by numerical methods. For the analysis of unstability by rock block movements, DEM was used considering the statistical distribution of rock joints. Concerning thermally induced cracking, FDM was used with thermomechanical stress analysis. Finally, in order to evaluate the joint failure during the thawing process, BE algorithm was applied. Numerical examples applied for the pilot plant show that the possibility of unstable failure of opeings exists but can be avoided with proper rock reinforcements provided.

  • PDF

A study on the application and construction of a rainwater storage tank in apartment complex (공동주택단지에서의 빗물저수조 설치 및 활용방안 연구)

  • Lee, Won-Yeul;Jeong, Sang-Min;Shin, Duck;Lee, Chuel-Hun;Han, Moo-Young
    • Journal of the Korea Institute of Building Construction
    • /
    • v.5 no.4 s.18
    • /
    • pp.165-171
    • /
    • 2005
  • Nowadays, a source of all water, which has been spent by a lot of people, is the rainwater The rainwater is directly relating human being' life. According to how to use rainwater. human being' life is abundant or poor. Due to the lack of underground filtration quantity, the water circulation of the city is discontinued and the underground ecosystem is destroyed. This study suggest that the unused underground space of building and temporary structure can be used into rainwater storage tank in the facility to use rainwater. Moreover, in this study, while the building is constructed, It is showed that the water used in construction can be replaced in the rainwater.

Evaluation of ground characteristics near underground rainfall storage facilities using shear wave velocity (전단파 속도를 이용한 지하 저류조 주변 지반특성 평가)

  • Jo, Seon-Ah;Oh, Tae-Min;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.2
    • /
    • pp.225-236
    • /
    • 2014
  • Shear wave velocity was used to estimate the geotechnical characteristics (void ratio and shear strength) of ground near an underground rainfall storage facility. An oedometer cell was utilized to measure the shear wave velocity and the displacement of specimens. Shear strengths were obtained by direct shear tests. The relationships along the shear wave velocity, void ratio, and shear strength were verified and used to infer the shear strength profile with the depth. In addition, changes in shear strength due to the construction of the underground rainfall storage system were estimated using the suggested method. The results show that the in-situ shear strength deduced from the shear wave velocity-void ratio-shear strength relationship is in good agreement with that obtained from an in-situ investigation (SPT).

Temperature change around a LNG storage predicted by a three-dimensional indirect BEM with a hybrid integration scheme

  • Shi, Jingyu;Shen, Baotang
    • Geosystem Engineering
    • /
    • v.21 no.6
    • /
    • pp.309-317
    • /
    • 2018
  • We employ a three-dimensional indirect boundary element method (BEM) to simulate temperature change around an underground liquefied natural gas storage cavern. The indirect BEM (IBEM) uses fictitious heat source strength on boundary elements as basic variables which are solved from equations of boundary conditions and then used to compute the temperature change at other points in the considered problem domain. The IBEM requires evaluation of singular integration for temperature change due to heat conduction from a constant heat source on a planar (triangular) region. The singularity can be eliminated by a semi-analytical integration scheme. However, it is found that the semi-analytical integration scheme yields sharp temperature gradient for points close to vertices of triangle. This affects the accuracy of heat flux, if they are evaluated by finite difference method at these points. This difficulty can be overcome by a combination of using a direct numerical integration for these points and the semi-analytical scheme for other points distance away from the vertices. The IBEM and the hybrid integration scheme have been verified with an analytic solution and then used to the application of the underground storage.

Feasibility Study on the Utilization of Abandoned Underground Excavation Caverns (지하 채굴 폐공동의 활용 가능성 검토)

  • 임한욱;백환조;김치환
    • Tunnel and Underground Space
    • /
    • v.10 no.2
    • /
    • pp.249-256
    • /
    • 2000
  • According to the industrial restructuring in the late 1980's, most domestic mines have been shutdown or suspended in operation. The closed underground excavation caverns remain in their abandoned conditions, and they will potentially cause environmental hazards. To evaluate the feasibility of the utilization of the abandoned caverns, the foreign crises were studied. As a result, we proposed several possible examples including underground storage cavern fur food products, underground compressed air energy system(CAES), and underground repository (or incineration plant) of industrial wastes. Among them, the underground waste repositories are most probable to be seen in Korea in the near future. For this, the study in rock engineering aspects should be conducted, which will include the establishment of support system and safety measure of the abandoned underground excavation caverns.

  • PDF

Structural Response of Underground LNG Storage Tank (Parameter Study for Design Conditions) (지하식 LNG 저장탱크의 설계 조건에 따른 거동분석)

  • 곽효경;이광모;송종영
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.2
    • /
    • pp.219-235
    • /
    • 2002
  • This paper deals with parametric studies of the structural response of underground LNG storage tanks according to change in design conditions. In the design of underground LNG storage tank, it is requited to determine the optimal tank shape and dimension to represent a more improved structural behavior under many loading conditions and load combinations. Consequently, main factors which affect to the structural response of LNG storage tanks from planning and design up to maintenance, are investigated, and the differences in structural behavior due to those factors are analyzed. On the basis of the obtained results item parametric studies, a guideline for a more reasonable design is introduced.

Comparative Analysis of the Storm Sewer Expansion Methodology and Underground Rainwater Storage Tanks for Urban Flood Control (기존 도시의 홍수저감을 위한 우수관거 배수용량 증대 및 지하 빗물저류조 설치효과 비교 분석)

  • Lee, Ho Yeol;Seo, Gyu Tae;Lee, Taek Soon
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.6
    • /
    • pp.754-761
    • /
    • 2013
  • Urban floods are usually caused by the lack of drainage capacity. Hence, sewer capacity expansion methodology by replacing small pipes with bigger ones is primarily applied as a flood control measure. However, this approach is often unreasonable because of the costs and time involved. Thus, the installation of underground rainwater storage tanks with the two advantages of flood control and water conservation is proposed. This study compared the effectiveness of flood control by both the sewer expansion methodology and rainwater storage tanks using the Storm Water Management Model. Three cases were simulated in this study. The first case analyzed flood reduction by the storm sewer expansion methodology. The simulation results indicate that the overflow volume from manholes was reduced by 49% with this methodology. The second case analyzed flood reduction by installation of rainwater storage tanks. The simulation results indicate that the overflow volume was reduced by 62%. However, these two cases could not prevent urban floods completely. Hence, the third case analyzed the joint application of the storm sewer expansion methodology and rainwater storage tanks. In this simulation, flooding did not occur. Consequently, the results of this study clearly show that underground rainwater storage tanks are more effective for flood control than capacity expansion of storm sewer. Furthermore, the joint application of these two flood control measures is more effective than their separate application.

Flexible and Lined Segment Tunnel for Underground Compressed Air Energy Storage(CAES) (복공식 압축공기 지하저장을 위한 가변성 분할 라이닝 터널기술)

  • Kim, Hyung-Mok;Rryu, Dong-Woo;Chung, So-Keul;Song, Won-Kyong
    • Tunnel and Underground Space
    • /
    • v.19 no.2
    • /
    • pp.77-85
    • /
    • 2009
  • Flexible and lined segment air-tight tunnelling technology for Compressed Air Energy Storage-Gas Turbine(CAES-G/T) power generation was introduced. The distinguished characteristics of the air-tight tunnel system can be summarized by two facts. One is that the high inner pressure due to compressed air is sustained by surrounding rock mass with allowing sufficient displacement of lining segment. The other is that the air-tightness of storage tunnel was enhanced by adopting a specially designed rubber sheet. The flexible lined air-tight underground tunnel can be constructed at a comparatively shallow depth and near urban area so that the locally distributed CAES-G/T power generation can be accomplished. In addition, this air-tight tunnelling technology can be applied to a variety of energy underground storage tunnels such as Compressed Natural Gas(CNG), Liquifed Petroleum Gas(LPG), DeMethyl Ether(DME) etc.

Study for Reducing Safety Distance by Installing Ammunition Storage Facility in Underground (탄약저장시설 지하화에 따른 안전거리 축소방안 연구)

  • Park, Sangwoo;Jun, Jonghoon;Choi, Hangseok;Park, Young-Jun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.3
    • /
    • pp.253-260
    • /
    • 2020
  • With increasing interest in an underground-type ammunition storage facility, several design results have been provided recently. However, since not only experts in the tunnel but also military persons in charge of ammunition have not fully understood the safety distance standard, reliable design results are not being produced. In this study, the effective design method of an underground-type ammunition storage facility was provided by analyzing the current safety distance standard. First, the critical safety distances that dominate the size of construction site for underground-type ammunition storage facilities were evaluated, which are the layout of chambers and the configuration of the entrances. Then, the decreasing effect of inter-chamber distance was studied according to the rock type and the storage density of ammunition. In addition, the method of designing tunnels with parallel lines and two-floors was considered for arranging more chambers while complying with the safety distance standards. In particular, numerical simulations were carried out to determine the satisfaction of the safety distance standards when an underground-type ammunition storage facility is composed of two-floor and the decreasing effect of inter-chamber distance according to the inner explosive pressure reduction. Finally, the method to adjust the size of entrances and the path of pressure were studied for decreasing the safety distance at the entrance.