• Title/Summary/Keyword: underground mine cavity

Search Result 20, Processing Time 0.018 seconds

A Study on Digitization and Figuration Analysis of the Underground Mine Cavity Using MIRECO EYE System (MIRECO EYE 시스템을 활용한 광산 지하공동의 수치화 및 형상화 분석 연구)

  • Kim, Soo Lo;Park, Jay Hyun;Yang, In Jae
    • Tunnel and Underground Space
    • /
    • v.28 no.5
    • /
    • pp.387-399
    • /
    • 2018
  • Mine reclamation project is closely related to human's past mining activities and the current human's living environment. It is a reason for the national management. In order to efficiently carry out mine reclamation projects, a precise investigation and analysis of the underground space of the abandoned mine is required. Korea MINE RECLAMATION Corp. is developing a practical technology that is effective in investigating and actually measuring underground cavities. MIRECO EYE system is an exploration equipment for 3D digitization and figuration of underground cavities. As combining a laser, sonar and image acquisition technology, it enables access to information about inaccessible underground cavities and effective management of subsidence risk of mined area. and currently it is also utilized for various purposes in related areas such as investigating urban sinkholes. This article is precise numerical and geometric information analysis obtained through MIRECO EYE system.

A Study on the Development of Rapidly Hardening Grouting Method for the Effective Filling in the Underground Cavity (지하공동의 효율적 충전을 위한 급결 충전 그라우트공법개발에 관한 연구)

  • Kim, Soo-Lo;Kim, Tae-Heok;Shin, Dong-Chun;Kwon, Hyun-Ho
    • Tunnel and Underground Space
    • /
    • v.19 no.6
    • /
    • pp.534-544
    • /
    • 2009
  • The collapse of the underground cavity can cause the abrupt local subsidence of the ground surface. It can be hazardous to the stability of road and building for human activity. Therefore it is necessary to develop reinforcement methods for the filling of the underground cavity. This study was executed to improve the material quality and systems to fill the calcium-aluminate mineral $(C_{12}A_7)$ environmentally, and minimize the loss of filling materials for the steep underground cavity. Filling material which was developed in this study is composed of rapid hardening material and additives. The developed material had rapid hardening and non-separation ability in the water cavity condition, so it made the effective underground dam in the cavity with prevention of material loss when it was poured in the water cavity. Results of heavy metal leaching test for environmental assessment showed that it was environmentally suiTable material for the filling in the mine cavity.

Stability Assessment of Building Foundation over Abandoned Mines (채굴 지역에서의 건축물 기초 지반 안정성 평가 연구)

  • 권광수;박연준
    • Tunnel and Underground Space
    • /
    • v.11 no.2
    • /
    • pp.174-181
    • /
    • 2001
  • The cavities created by underground mining, if remained unfilled, can cause ground settlement and surface subsidence as a result of relaxation and breakdown of the carven roof. Construction of structures above the underground mine cavity will have serious problems concerning both structural stability and safely even if the cavity is back-filled. This study was conducted to confirm the location and condition of the cavern as well as the state of the back-fill in A mine area using core logging and borehole camera. The bearing capacity and other mechanical properties of the ground were also measured by the standard penetration test(SPT). Obtained data were used to assess the stability of the ground and the structures to be built by numerical analysis using FLAC. The site investigation results showed that the mine cavities were filled with materials such as boulder and silty sand(SM by unified classification). Result of the numerical analyses indicated that constructing building structures on the over-lying ground above the filled cavities is secure against the potential problems such as surface subsidence and ground settlement.

  • PDF

Research and Development Trends for Mine Subsidence Prevention Technology in Korea (한국의 광산 지반침하방지기술 연구개발 동향)

  • Kim, Soo Lo;Park, Joo Hyun
    • Tunnel and Underground Space
    • /
    • v.25 no.5
    • /
    • pp.408-416
    • /
    • 2015
  • The collapse of the underground cavities and voids, which were made for developing mineral resources, can cause the subsidence of the ground surface in the residential areas. During the Japanese colonial era and the 1960's mining boom period, lots of mines had been developed indiscriminately in Korea. Due to complicated geological conditions and mining methods, many of dangerous underground mine cavities with steep slopes had been generated at the shallow surface. Due to such conditions, it is difficult to directly apply valid foreign reclamation practice for the cavities in Korea environments. It is necessary to develop the efficient ground stabilization technologies for the Korea underground mine conditions to solve abandoned mine reclamation properly. Therefore, MIRECO and Korea government have been carrying out practical researches and technical developments together with other academic researchers and reclamation business partners, and various practical solutions such as surveying and exploration methods, proper cavity filling materials and reinforcement methods have been developed with application in the mine field. In this article, up to date technologies and R&D trends in the field of mine subsidence prevention technology are broadly reviewed to establish the future direction of a research and development.

A Study on the Basic Geometry Analysis of Abandoned Underground Mine Tunnels in Korea and Advanced Measuring-Analysis Technology for Underground Mine Cavities (한국의 폐광산 지하 채굴갱도 기초형상 분석 및 개선된 광산 지하공동 측정·분석 기술 연구)

  • Kim, Soo-Lo;Park, Sung-Bin;Choi, Byung-Hee;Yun, Jung-Mann;Jeong, Gyo-Cheol
    • Tunnel and Underground Space
    • /
    • v.26 no.6
    • /
    • pp.455-465
    • /
    • 2016
  • The collapse of underground mine development void for mineral resources can cause the subsidence of ground surface. In order to prevent the subsidence of ground, data such as maps or pictures of past mining site is important information for current mine reclamation works. In particular, mine subsidence management was based on mining maps and pictures. The process of the mining area surveys, safety evaluation, and ground reinforcement are normally possible with information such as maps and pictures in past mining. During the Japanese colonial period and 1960's, a lot of mines were developed in Korea indiscriminately. However, mining information at that time is limited to use. In the future, mining information will become even more rare. MIRECO intends to establish a realistic alternative solution. In this study, the basic numerical information of developed mine tunnels in Korea is statistically reviewed, and advanced underground cavity measuring technology was studied. 4,473 mine tunnel opening data of 1,784 abandoned mines in korea were collected and sorted. As a result of the analysis, the average value of small mine tunnel openings in Korea was 1.982 m in height and 1.959 m in width. The mean value of shape factor was analyzed as 0.485. The summary of these numerical mine data will be helpful for understanding and researching Korean abandoned mines. Therefore, the development of measurement technology for abandoned mine cavities and tunnels is expected to facilitate more effective mine subsidence management works in Korea.

A Numerical Analysis on the Collapse and Backfill Mechanism of the Abandoned Mine Cavity (폐광의 점진적 파괴 및 뒷채움 효과에 대한 해석적 연구)

  • Lee, Jun-Suk;Bang, C.S.
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.2 no.2
    • /
    • pp.62-71
    • /
    • 2000
  • The abandoned mines causing settlement of the surface above and collapse of the cavities are the major influencing factor on the stability of the nearby underground structures. To prevent the harmful effect, the backfill methods are commonly applied to the cavities although the design criteria and the analysis method are not properly addressed in some cases. An approximate analytical method together with the numerical technique is considered in this study to simulate the gradual deterioration of the rock masses around the cavities and, therefore, the influential zone to the underground structures passing through the cavities. Also considered in this study is the backfill effect on the stability of the rock masses around the cavities. Specifically, the incomplete backfill effect is compared with that of the idealized backfill method by adopting elasto-plastic analysis involving a strain softening material law.

  • PDF

A Case Study of Electrical Resistivity and Borehole Imaging Methods for Detecting Underground Cavities and Monitoring Ground Subsidence at Abandoned Underground Mines (폐광산 지역의 공동 탐지 및 지반침하 모니터링을 위한 전기비저항탐사와 시추공영상촬영기법 적용 사례)

  • Choi, Jeong-Ryul;Kim, Seung-Sep;Park, Sang-Kyu;Shin, Kwang-Soo;Kang, Byung-Chun
    • Journal of the Korean earth science society
    • /
    • v.34 no.3
    • /
    • pp.195-208
    • /
    • 2013
  • We employed electrical resistivity and optical borehole imaging methods to identify underground cavities and determine ground subsidence rate at the study area affected by land subsidence due to abandoned underground mines. At the study site 1, the anomalous zones of low resistivity ranging between 100 ohm-meter and 150 ohm-meter were observed and confirmed as an abandoned underground mine by subsequent borehole drilling and optical borehole imaging. Although the electrical resistivity survey was unavailable due to the paved surface of the study site 2, we were able to locate another abandoned underground mine with the collapsed mine shaft based on the distribution of the ore veins and confirmed it with borehole drilling. In addition, we measured vertical displacements of underground features indicating underground subsidence by conducting optical borehole imaging 6 times over a period of 43 days at the study site 2. The displacement magnitude at the deep segment caused by subsidence appeared to be 3 times larger than those at the shallow segment. Similarly, the displacement duration at the deep segment was 4 times longer than those at the shallow segment. Therefore, the combination of electrical resistivity and optical borehole imaging methods can be effectively applicable to detect and monitor ground subsidence caused by underground cavities.

Development of the Environmentally Friendly Filling Material for the Underground Cavities using the Rock-dust and an Assessment on Filling and Material Characteristics (석분토를 이용한 지하공동의 친환경적 충전재 개발과 충전 및 재료특성 평가)

  • Ma Sang-Joon;Kim Dong-Min
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.9
    • /
    • pp.35-44
    • /
    • 2005
  • Recently, underground cavities such as limestone cavity and abandoned mine give rise to a lot of damage in SOC facilities. But there are many difficult problems such as delay of the working terms and enormous economic losses in finding a new method and changing construction design. In this study, a new filling material for underground cavities was developed using the stone-dust classified as industry waste polluting environment. As a result of test, filling material properties was that a compressive strength was $34{\~}60\;kgf/cm^2$, a change ratio in length was $0.268{\~}0.776\%$ and water absorption was $34.3{\~}46.9\%$. Also as a result of suspended mass test and pH test, it was confirmed that the developed filling material has a characteristic of non-separating in water and it was an environmentally friendly material.

A Study on the Determination of Grout Injection Volume according to the Angle of Mine Cavity (채굴적 경사에 따른 그라우트 주입량 결정에 관한 연구)

  • Lee, Byung-Yoon;Jeon, Seok-Won;Kim, Tae-Hyun;Cho, Jung-Woo;Kim, Kwan-Il;Kim, Tae-Hyok;Kim, Soo-Lo
    • Tunnel and Underground Space
    • /
    • v.19 no.2
    • /
    • pp.107-122
    • /
    • 2009
  • Insufficient reinforcement for maximizing payability and benefits in mining cavities causes subsidence problems and it threatens residents' lives and properties. So many reinforcement management methods are developed and now various methods are being applied in the field. Among them, a filling method which sends reinforcement materials in the cavities is used extensively. However, domestic geological condition and coal mining methods are so complicate that make many steep cavities. Because of those problems, it is difficult to apply foreign methods directly, which is valid for horizontal cavities. In this study, the injection volume of quick setting grouting material which is developed for filling cavities in domestic condition and the shape of consolidated bodies are investigated. And a programming method for estimating proper injection amounts of filling materials is proposed. The results are verified by numerical analysis using UDEC.

Evaluation of Groundwater Flow by Gravel-Filling and Temporary Drainage in Groundwater-saturated Limestone Mine Cavities (지하수 포화 석회석 채굴공동에서의 골재 충전 및 임시배수시 발생하는 지하수 유동 평가)

  • Choi, Woo-Seok;Kang, Byung-Chun;Kim, Eun-Sup;Shin, Dong-Choon
    • Tunnel and Underground Space
    • /
    • v.27 no.4
    • /
    • pp.205-216
    • /
    • 2017
  • Fluctuations in groundwater level are the major cause of ground subsidence in the abandoned limestone mine. In this study, evaluation of groundwater flow under three different cases of natural condition, aggregate-filling, temporary drainage in groundwater-saturated limestone mine cavities was executed by 3-dimensional analysis. In the case of aggregate-filling, although the water level both in the upper ground of mine cavities and an agricultural watershed was elevated, it was lower than the water level fluctuation of an agricultural water use and rainfall and the flow rate was similar to the flow rate of natural condition. In the case of temporary drainage, as the water level in the upper ground of mine cavities and an agricultural watershed decrease rapidly and the flow rate has increased by 25times, so the risk of ground subsidence increased.