• Title/Summary/Keyword: underground development

Search Result 1,087, Processing Time 0.022 seconds

Current Status of X-ray CT Based Non Destructive Characterization of Bentonite as an Engineered Barrier Material (공학적방벽재로서 벤토나이트 거동의 X선 단층촬영 기반 비파괴 특성화 현황)

  • Diaz, Melvin B.;Kim, Joo Yeon;Kim, Kwang Yeom;Lee, Changsoo;Kim, Jin-Seop
    • Tunnel and Underground Space
    • /
    • v.31 no.6
    • /
    • pp.400-414
    • /
    • 2021
  • Under high-level radioactive waste repository conditions, bentonite as an engineered barrier material undergoes thermal, hydrological, mechanical, and chemical processes. We report the applications of X-ray Computed Tomography (CT) imaging technique on the characterization and analysis of bentonite over the past decade to provide a reference of the utilization of this technique and the recent research trends. This overview of the X-ray CT technique applications includes the characterization of the bentonite either in pellets or powder form. X-ray imaging has provided a means to extract grain information at the microscale and identify crack networks responsible for the pellets' heterogeneity. Regarding samples of pellets-powder mixtures under hydration, X-ray CT allowed the identification and monitoring of heterogeneous zones throughout the test. Some results showed how zones with pellets only swell faster compared to others composed of pellets and powder. Moreover, the behavior of fissures between grains and bentonite matrix was observed to change under drying and hydrating conditions, tending to close during the former and open during the latter. The development of specializing software has allowed obtaining strain fields from a sequence of images. In more recent works, X-ray CT technique has served to estimate the dry density, water content, and particle displacement at different testing times. Also, when temperature was added to the hydration process of a sample, CT technology offered a way to observe localized and global density changes over time.

Ground Vibration Reduction Technology Using High Damping Polymer Concrete (고 감쇠 폴리머 콘크리트를 활용한 지반진동 저감기술에 대한 연구)

  • Kim, Jeong-Jin;Seok, Won-Gyun;We, Joon-Woo;Ahn, So-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.154-160
    • /
    • 2021
  • Recently, there have been increasing construction works carried out in urban centers, which are inducing frequent artificial vibration in the vicinity of existing structures due to such construction works. moreover, in case of industrial estates, vibration is induced due to operation of machines in the surrounding areas, thereby causing problems. meanwhile, in case of ordinary concrete that compose structure has low level of damping capability for vibration. accordingly, there are difficulties in blocking a wide range of vibrations delivered to the structures from outside including not only vibrations generated in the structures themselves but also ground vibration. recently, numerous studies are being carried out actively on high-damping system that markedly enhanced the damping performances of structures by utilizing polymer concrete in order to block the vibrations delivered to the structures through ground. therefore, this study compared the performances of polymer concrete with those of ordinary concrete, polyurethane pad and foamed rubber pad in order to review its performances in reducing ground vibration. for this purpose, review of FRF and vibration acceleration as dynamic characteristics was made. after comparative verification on the dynamic characteristics is made when polymer concrete and other aforementioned materials are applied to underground structures, the possibility of application of polymer concrete to structures is reviewed.

Development of Accelerator Control System for Wet Shotcrete Spraying Equipment (습식 숏크리트 뿜칠 장비의 급결제 유량 제어 시스템 개발)

  • Tae-Ho, Kang;Soo-Ho, Chang;Soon-Wook, Choi;Jin-Tae, Kim;Bong-Gyu, Kim;Chulho, Lee
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.353-362
    • /
    • 2022
  • The wet shotcrete refers to a method in which all materials are mixed and then supplied to the spraying device, compressed air is added to the nozzle, and the spraying speed is improved to spray on the target surface. In order to reproduce the amount of shotcrete used in the wet method in the field and the situation at the laboratory scale, it is essential to control the discharge amount of the equipment. In this study, in order to increase the reproducibility of field conditions at the laboratory scale, a flow control system for shotcrete mortar spraying equipment was developed and applied to the equipment. To verify the developed equipment, a discharge control test using water and mortar was performed. In the developed control system, the discharge was smoothly controlled according to the user input value for the mono pump, but the discharge was not properly controlled according to the input value for the screw pump because of a reducer. When a speed reducer is attached, it is necessary to adjust the operation rate of the screw pump close to the target flow rate by increasing the operation rate of the screw pump while lowering the operation rate of the mono pump.

A Study on Mechanical Properties and Applicability of CNT-Mixed Grout (CNT-Mixed grout의 역학적 특성 및 적용성 연구)

  • Kim, Seunghyun;Kim, Kanghyun;Shin, Jongho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.9
    • /
    • pp.5-16
    • /
    • 2022
  • In recent years due to the development of urban and underground space, the number of ground disasters is increasing, and it is also leading to social problems. To solve the problem, a grouting method is generally used. However, the grouting method has material (grout) limitations in permeability, gelation properties and tensile resistance. Therefore, research on grout materials mixed with fibers is actively carried out to improve the problems. However, in the actual ground injection process, many difficulties have been faced causing the blockage of the inlet port and the injection tube. In this study, 'CNT-mixed grout material' was developed using CNT powder that can reinforce the tensile strength of soils. The uniaxial compressive and tensile strength tests were performed to obtain the optimal content and mechanical properties of the CNT Powder-mixed grout. It was found that the optimal CNT powder content is 0.5% that gives the average maximum strength. A one-dimensional injection test and the bulb formation test were carried out, and it was identified that the injection rate and bulb form could be controlled by pressure and mixing ratio. Field application of the CNT-Mixed grout is simulated using numerical analysis of slopes, foundations, and tunnels reinforced in several types. The positive effect of reducing plastic ranges and settlements was confirmed.

Changes in Growth and Saponin Content in Roots of Bellflower (Platycodon grandiflorum (JACQ.) A. DC.) with Different Soil Textures (토성에 따른 도라지뿌리의 생육과 성분함량 변화)

  • Mi-young Park;Yong Chul Kim;Soon-Wook Kwon;Su-Noh Ryu;Tae-ho Ham
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.67 no.4
    • /
    • pp.296-304
    • /
    • 2022
  • To maximize the medicinal properties of bellflower root (Platycodi radix), its growth and development according to soil texture were investigated using four types of soil: masato (decomposed granite), soil mix, loamy sand, and sandy loam. Saponin content was measured. With regard to bellflower root growth depending on soil texture, its growth was better in the order of loamy sand > sandy loam > soil mix > masato in the above-ground part, and loamy sand > soil mix > sandy loam > masato in the underground part in the order. The average content of general ingredients were 77.3% water, 2.6% crude fat, 3.2% crude flour, 6.0% crude protein, and 10.9% carbohydrates. With respect to saponin analysis of bellflower roots, the saponin content regarding platycodin D, platycodin D3, polygalacin D, and deapioplatycodin D were higher in the order of 282.4, 104.7, 29.1, 19.1 mg/100 g, respectively. The content of organic matter and phosphoric acid was high in soil mix and sandy loam, and platycodin D3 showed similar levels in all soil types. As a result, the soil mix is considered most suitable in terms of yield and component levels, however, it is the most expensive type. As a replacement, sandy loam was adequate in terms of fresh weight related to yield and highest saponin content.

Effects of parallel undercrossing shield tunnels on river embankment: Field monitoring and numerical analysis

  • Li'ang Chen;Lingwei Lu;Zhiyang Tang;Shixuan Yi;Qingkai Wang;Zhibo Chen
    • Geomechanics and Engineering
    • /
    • v.35 no.1
    • /
    • pp.29-39
    • /
    • 2023
  • As the intensity of urban underground space development increases, more and more tunnels are planned and constructed, and sometimes it is inevitable to encounter situations where tunnels have to underpass the river embankments. Most previous studies involved tunnels passing river embankments perpendicularly or with large intersection angle. In this study, a project case where two EPB shield tunnels with 8.82 m diameter run parallelly underneath a river embankment was reported. The parallel length is 380 m and tunnel were mainly buried in the moderate / slightly weathered clastic rock layer. The field monitoring result was presented and discussed. Three-dimensional back-analysis were then carried out to gain a better understanding the interaction mechanisms between shield tunnel and embankment and further to predict the ultimate settlement of embankment due to twin-tunnel excavation. Parametrical studies considering effect of tunnel face pressure, tail grouting pressure and volume loss were also conducted. The measured embankment settlement after the single tunnel excavation was 4.53 mm ~ 7.43 mm. Neither new crack on the pavement or cavity under the roadbed was observed. It is found that the more degree of weathering of the rock around the tunnel, the greater the embankment settlement and wider the settlement trough. Besides, the latter tunnel excavation might cause larger deformation than the former tunnel excavation if the mobilized plastic zone overlapped. With given geometry and stratigraphic condition in this study, the safety or serviceability of the river embankment would hardly be affected since the ultimate settlement of the embankment after the twin-tunnel excavation is within the allowable limit. Reasonable tunnel face pressure and tail grouting pressure can to some extent suppress the settlement of the embankment. The recommended tunnel face pressure and tail grouting pressure are 300 kPa and 550 kPa in this study, respectively. However, the volume loss plays the crucial role in the tunnel-embankment interaction. Controlling and compensating the tunneling induced volume loss is the most effective measure for river embankment protection. Additionally, reinforcing the embankment with cement mixing pile in advance is an alternative option in case the predicted settlement exceeds allowable limit.

Development and Application of Tunnel Design Automation Technology Using 3D Spatial Information : BIM-Based Design for Namhae Seomyeon - Yeosu Shindeok National Highway Construction (3D 공간정보를 활용한 터널 설계 자동화 기술 개발 및 적용 사례 : 남해 서면-여수 신덕 국도 건설공사 BIM기반 설계를 중심으로)

  • Eunji Jo;Woojin Kim;Kwangyeom Kim;Jaeho Jung;Sanghyuk Bang
    • Tunnel and Underground Space
    • /
    • v.33 no.4
    • /
    • pp.209-227
    • /
    • 2023
  • The government continues to announce measures to revitalize smart construction technology based on BIM for productivity innovation in the construction industry. In the design phase, the goal is design automation and optimization by converging BIM Data and other advanced technologies. Accordingly, in the basic design of the Namhae Seomyeon-Yeosu Sindeok National Road Construction Project, a domestic undersea tunnel project, BIM-based design was carried out by developing tunnel design automation technology using 3D spatial information according to the tunnel design process. In order to derive the optimal alignment, more than 10,000 alignment cases were generated in 36hr using the generative design technique and a quantitative evaluation of the objective functions defined by the designer was performed. AI-based ground classification and 3D Geo Model were established to evaluate the economic feasibility and stability of the optimal alignment. AI-based ground classification has improved its precision by performing about 30 types of ground classification per borehole, and in the case of the 3D Geo Model, its utilization can be expected in that it can accumulate ground data added during construction. In the case of 3D blasting design, the optimal charge weight was derived in 5 minutes by reviewing all security objects on the project range on Dynamo, and the design result was visualized in 3D space for intuitive and convenient construction management so that it could be used directly during construction.

Development of real-time defect detection technology for water distribution and sewerage networks (시나리오 기반 상·하수도 관로의 실시간 결함검출 기술 개발)

  • Park, Dong, Chae;Choi, Young Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.spc1
    • /
    • pp.1177-1185
    • /
    • 2022
  • The water and sewage system is an infrastructure that provides safe and clean water to people. In particular, since the water and sewage pipelines are buried underground, it is very difficult to detect system defects. For this reason, the diagnosis of pipelines is limited to post-defect detection, such as system diagnosis based on the images taken after taking pictures and videos with cameras and drones inside the pipelines. Therefore, real-time detection technology of pipelines is required. Recently, pipeline diagnosis technology using advanced equipment and artificial intelligence techniques is being developed, but AI-based defect detection technology requires a variety of learning data because the types and numbers of defect data affect the detection performance. Therefore, in this study, various defect scenarios are implemented using 3D printing model to improve the detection performance when detecting defects in pipelines. Afterwards, the collected images are performed to pre-processing such as classification according to the degree of risk and labeling of objects, and real-time defect detection is performed. The proposed technique can provide real-time feedback in the pipeline defect detection process, and it would be minimizing the possibility of missing diagnoses and improve the existing water and sewerage pipe diagnosis processing capability.

Constructability Evaluation of Seismic Mechanical Splice for Slurry Wall Joint Consisting of Steel Tube and Headed Bars (슬러리월의 내진설계를 위한 강재각관과 확대머리 철근으로 구성된 기계적 이음의 시공성 평가)

  • Park, Soon-Jeon;Kim, Dae-Young;Lim, In-Sik
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.3
    • /
    • pp.295-303
    • /
    • 2023
  • South Korea has recently witnessed an increasing number of seismic events, leading to a surge in studies focusing on seismic earth pressures, as well as the attributes of geological layers and ground where foundations are established. Consequently, earthquake-resistant design has become imperative to ensure the safety of subterranean structures. The slurry wall method, due to its superior wall rigidity, excellent water resistance, and minimal noise and vibration, is often employed in constructing high-rise buildings in urban areas. However, given the separation between panels that constitute the wall, slurry walls possess limited resistance to seismic loads in the longitudinal direction. As a solution, several studies have probed into the possibility of interconnecting slurry wall panels to augment their seismic performance. In this research, we developed and evaluated a method for linking slurry wall panels using mechanical joints, including concrete-confined steel pipes and headed bars, through mock-up tests. We also assessed the constructability of the suggested method and compared it with other analogous methods. Any challenges identified during the mock-up test were discussed to guide future research in resolving them. The results of this study aid in enhancing the seismic performance of slurry walls through the development of an interconnected panel method. Further research can build on these findings to address the identified issues and improve the efficacy and reliability of the proposed method.

Fracture Behaviors of Jointed Rock Model Containing an Opening Under Biaxial Compression Condition (이축압축 조건에서 공동이 존재하는 유사 절리암반 모델의 파괴 거동)

  • SaGong, Myung;Yoo, Jea-Ho;Park, Du-Hee;Lee, J.S.
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.10
    • /
    • pp.17-30
    • /
    • 2009
  • Underground construction such as tunneling can induce damages on the surrounding rock mass, due to the stress concentration of in situ stresses and excessive energy input during construction sequence, such as blasting. The developed damage on the rock mass can have substantial influence on the mechanical and hydraulic behaviors of the rock masses around a tunnel. In this study, investigation on the generation of damage around an opening in a jointed rock model under biaxial compression condition was conducted. The joint dip angles employed are 30, 45, and 60 degrees to the horizontal, and the synthetic rock mass was made using early strength cement and water. From the biaxial compression test, initiation and propagation of tensile cracks at norm to the joint angle were found. The propagated tensile cracks eventually developed rock blocks, which were dislodged from the rock mass. Furthermore, the propagation process of the tensile cracks varies with joint angle: lower joint angle model shows more stable and progressive tensile crack propagation. The development of the tensile crack can be explained under the hypothesis that the rock segment encompassed by the joint set is subjected to the developing moment, which can be induced by the geometric irregularity around the opening in the rock model. The experiment results were simulated by using discrete element method PFC 2D. From the simulation, as has been observed from the test, a rock mass with lower joint angle produces wider damage region and rock block by tensile cracks. In addition, a rock model with lower joint angle shows progressive tensile cracks generation around the opening from the investigation of the interacted tensile cracks.