• Title/Summary/Keyword: underground detection

Search Result 220, Processing Time 0.031 seconds

A Study on the Measurement of Acoustic Emission and Deformation Behaviors of Rock and Concrete under Compression (암석 및 콘크리트의 압축변형거동과 미소파괴음 측정에 관한 연구)

  • 심현진;이정인
    • Tunnel and Underground Space
    • /
    • v.10 no.1
    • /
    • pp.59-69
    • /
    • 2000
  • Acoustic emission is n burst of microseismic waves generated by microscopic failure due to deformation in materials. The study on the detection of initiation and propagation of microcracks from acoustic emission measurement is very important for the evaluation of the stability of underground rock structures by the nondestructive letting method. In this study, acoustic emission was measured under uniaxial stiffness loading test used to obtain the complete stress-strain curves of marble and concrete used as reinforced materials of rock structures. The analysis of acoustic emission parameters and source location were performed to discuss the characteristics of the deformation and failure behavior of rock and concrete. And acoustic emission was measured under cyclic loading test to verify the Kaiser effect associated with the damage of materials, in situ stress of rock, and stress history of concrete structure.

  • PDF

A Study on leakage monitoring of tunnel linings using the electric resistivity survey (전기비저항탐사를 이용한 터널라이닝 누수조사 연구)

  • Shin, Jong-Ho;Shin, Yong-Seok;Yoon, Jong-Ryeol;Kim, Ho-Jong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.3
    • /
    • pp.257-267
    • /
    • 2008
  • Tunnels acting as drains involve groundwater-related problems such as deterioration of drainage systems or leakage through the linings. Generally initial and minor leakage problems can not be recognized by naked eyes. When the leakage over the linings is noticed, damages to structures and facilities have already occurred and could be considerable. Therefore it is vital to recognize initial leakage as early as possible and provide appropriate measures. Detection of leakage under operation requires installing piezometer. However, that may cause destruction of water proofing sheet which is generally not allowed. In this study electric resistivity method, one of the geophysical surveys, was adopted to detect possible leakage through tunnel linings. Physical lining models were made in the laboratory. The electric response was monitored for varying hydraulic conditions. It is shown that the method is very useful to detect initial leakage and monitor the malfunction of drainage system. Furthermore the method can also be used to check the quality of any repairing works of linings.

  • PDF

A detection algorithm for the installations and damages on a tunnel liner using the laser scanning data (레이저 스캐닝 데이터를 이용한 터널 시설물 및 손상부위 검측 알고리즘)

  • Yoon, Jong-Suk;Lee, Jun-S.;Lee, Kyu-Sung;SaGong, Myung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.1
    • /
    • pp.19-28
    • /
    • 2007
  • Tunnel management is a time-consuming and expensive task. In particular, visual analysis of tunnel inspection often requires extended time and cost and shows problems on data gathering, storage and analysis. This study proposes a new approach to extract information for tunnel management by using a laser scanning technology. A prototype tunnel laser scanner developed was used to obtain point clouds of a railway tunnel surface. Initial processing of laser scanning data was to separate those laser pulses returned from the installations attached to tunnel liner using radiometric and geometric characteristics of laser returns. Once the laser returns from the installations were separated and removed, physically damaged parts on tunnel lining are detected. Based on the plane formed by laser scanner data, damaged parts are detected by analysis of proximity. The algorithms presented in this study successfully detect the physically damaged parts which can be verified by the digital photography of the corresponding location on the tunnel surface.

  • PDF

A Study on the Effect of Soil Wineral and Component of the Pore Fluid to the Electrical Resistivity (흙의 구성광물과 간극수의 성분이 비저항값에 미치는 영향에 관한 연구)

  • Yoon, Chun-Kyeong;Yu, Chan;Yoon, Kil-Lim
    • Korean Journal of Environmental Agriculture
    • /
    • v.17 no.1
    • /
    • pp.59-64
    • /
    • 1998
  • The environmental problem of the rural area has been accelerated in soil as well as water. Soil contamination is usually caused by improper operation of landfills, abandoned mine fields, accidental spills, and illegal dumpings. Once soil contamination is initiated, pollutants migrate and may cause groundwater contamination which takes much effort for remediation. Early detection, therefore, is important to prevent further contamination. Electrical resistivity method was used to detect soil contamination, but it was not effective to the heterogeneous condition. Static cone penetrometer test (CPT) has been used widely to investigate geotechnical properties of the underground. In this study, electrical resistivity method and CPT are combined to improve the applicability of it. The pilot test was performed to examine the variation of electrical resistivity with different soil minerals and pore fluid characteristics. Soil samples used were poorly graded sand, silty sandy soil, and weathered granite soil. For all the cases, electrical resistivity decreased with increasing of moisture content. Soil mineral also affected the electrical resistivity significantly. Above all, leachate addition in the pore fluid was very sensitive and caused decreasing of electrical resistivity markedly. It implies that electrical resistivity method can be applied to investigate pollutant plume effectively. This is specially sure when the sensors contact the contaminated soils directly. The CPT method involves cone penetration to the ground, therefore, underground contamination around the cone could be investigated effectively even for heterogeneous condition as it penetrates if electrical resistivity sensors are attached on the cone.

  • PDF

A Study on Improvement of Connection Method of Underground Parking Lot SP Equipment Water Supply Pipe for Effective Fire Activities (효과적인 소방활동을 위한 지하주차장 스프링클러설비 송수배관 연결방식의 개선에 관한 연구)

  • Son, Gae-Seong;Choi, Ji-Hun;Choi, Don-Mook
    • Journal of the Korea Safety Management & Science
    • /
    • v.17 no.4
    • /
    • pp.161-169
    • /
    • 2015
  • A fire sprinkler system is very important to extinguish fire in the building. The sprinkler system initiates sprinkler discharge if the detection system identifies a developing fire and opens the pre-action valve. However, pre-action fire sprinkler systems mainly installed in the underground parking lot at the apartment complex do not properly operate at fire if the connection type of fire sprinkler systems does not properly installed and operated. This study identified the relationship between fire dispersion & damage and the connection type of water supply in the sprinkler system from many fire cases at the apartment complex in South Korea. In addition, this study also identified the water supply differences and characteristics between South Korea and foreign countries. The main purpose of this study is also to improve the water connection types in the sprinkler system that can reduce the potential failures of pre-action valve operation through electrical signal system. The study also suggests the improvement plan for water connection types in pre-action fire sprinkler system that can minimize potential failure of pre-action fire sprinkler system. The suggestions for revising the fire safe standard in South Korea includes letting the water supply pipe of sprinkler system water inlet connect to the second side of pre-action valve and the water flow device that can minimize potential failure of sprinkler system.

Studies on the Sorption and Fixation of Cesium by Vermiculite (II)

  • Lee, Sang-Hoon
    • Nuclear Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.97-111
    • /
    • 1974
  • The adsorption mechanism of Cs-137 in low level radioactive solution by vermiculite treated with Na ion is studied in order to investigate its effective utilization for the radioactive effluent treatment. The beneficial role of Na-vermiculite is that Na ion can induce the wider c-axis spacing in which Cs ion can be sorbed in vermiculite. Cation exchange capacity and distribution coefficient of cesium seems to be influenced by the variation of c-axis spacing of vermiculite. Comparative identification and detection with the characteristic analyses of X-ray diffraction and electron diffraction patterns, diffrential thermal analysis and electron microscopy of Na-, K- and Cs-vermiculite are studied for the phemomena of Cs adsorption by vermiculite. This importance of the utilization in terms of adsorption and fixation of cesium involving vermiculite is discussed. It is found that the Na-vermiculite is valuable outside charging material for high level radioactive liquid waste storage tank of underground to protect the pollution of the underground water.

  • PDF

Development of M2M-based Underground Space (subway) Disaster Response Network and EL Display Integrated Board (M2M기반 지하공간(지하철) 재난대응 네트워크 및 EL 디스플레이 통합 보드 개발)

  • Park, Miyun;Kwon, Segon;Park, EunChurn;Lee, Jeonhun
    • Journal of the Society of Disaster Information
    • /
    • v.13 no.4
    • /
    • pp.422-441
    • /
    • 2017
  • Notifying emergency evacuation methods, accurate disaster location and evacuation route guidance can be very active alternatives to quickly minimize evacuation and casualties in disaster situation in the development of subway disaster prevention detection system that detects the disaster signs at the subway station early on the basis of Internet of things and leads passengers to evacuate. It's not easy to ensure perfect functioning of fire fighting facilities and equipments due to underground space structure with narrow exits. Therefore, we developed disaster provision EL Display integrated board that can induce the most efficient evacuation and the field experiment was conducted to examine the practical application in this study. Especially the applicability was verified by field application test because there is no case in which EL panels are used to evacuate disasters.

Slope Behavior Analysis Using the Measurement of GFRP Underground Displacement (GFRP 록볼트 계측을 통한 사면 거동 분석)

  • Jin, Ji-Huan;Lim, Hyun-Taek;Bibek, Tamang;Chang, Suk-Hyun;Kim, Yong-Seong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.4
    • /
    • pp.11-19
    • /
    • 2018
  • Although many researches related to monitoring and automatic measuring devices for early warning system during slope failure have been carried out in Korea and aboard, most of the researches have installed measuring devices on the slope surface, and there are only few researches about warning systems that can detect and warn before slope failure and disaster occurs. In this study, slope failure simulation experiment was performed by attaching sensors to rock bolts, and initial slope behavior characteristics during slope failure were analyzed. Also, the experiment results were compared and reviewed with varied slope conditions, i.e. shotcrete slope and natural slope, and varied material conditions, i.e. GFRP and steel rock bolt. This study can be used as a basic data in development of warning and alarm system for early evacuation through early detection and warning before slope failure occurs in steep slopes and slope failure vulnerable areas.

GPS Ionospheric Perturbations Following ML ≥ 5.0 Earthquakes in Korean Peninsula (한반도내 규모 5.0 이상의 지진에 의한 GPS 전리층 변동)

  • Sohn, Dong-Hyo;Park, Sun-Cheon;Lee, Won-Jin;Lee, Duk Kee
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_4
    • /
    • pp.1531-1544
    • /
    • 2018
  • We detected the coseismic ionospheric disturbance generated by the earthquakes of magnitude 5.0 and greater in Korean Peninsula. We considered the seismic events such as Gyeongju earthquake in September 2016 with magnitude 5.8, the Pohang earthquake in November 2017 with magnitude 5.4, and the underground nuclear explosion from North Korea in September 2017 with magnitude 5.7. Although all GPS stations were not detected, the ionospheric disturbance induced by these earthquakes occurred approximately 10-30 minutes and 40-60 minutes after the events. We inferred that the time difference within each variation is due to the different focal depth and the geometry of epicenter, satellite, and GPS station. In the case of the Gyeongju earthquake, the earthquake had relatively deeper depth than the other earthquakes. However, the seismic magnitude was bigger and it occurred at nighttime when the ionospheric activity was stable. So we could observe such anomalous variations. It is considered that the ionospheric disturbance caused by the difference in velocity of the upward propagating waves generated by earthquake appears more than once. Our results indicate that the detection of ionospheric disturbances varies depending on the geometry of the GPS station, satellite, and epicenter or the detection method and that the apparent growth of amplitude in the time series varies depending on the focal depth or the site-satellite-epicenter geometry.

A case study of ground subsidence analysis using the InSAR technique (InSAR 기술을 이용한 지반침하분석 사례연구)

  • Moon, Joon-Shik;Oh, Hyoung-seok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.2
    • /
    • pp.171-182
    • /
    • 2022
  • InSAR (Interferometry SAR) technique is a technique that uses complex data to obtain phase difference information from two or more SAR image data, and enables high-resolution image extraction, surface change detection, elevation measurement, and glacial change observation. In many countries, research on the InSAR technique is being conducted in various fields of study such as volcanic activity detection, glacier observation in Antarctica, and ground subsidence analysis. In this study, a case of large ground settlement due to groundwater level drawdown during tunnelling was introduced, and ground settlement analyses using InSAR technique and numerical analysis method were compared. The maximum settlement and influence radius estimated by the InSAR technique and numerical method were found to be quite similar, which confirms the reliability of the InSAR technique. Through this case study, it was found that the InSAR technique reliable to use for estimating ground settlement and can be used as a key technology to identify the long-term ground settlement history in the absence of measurement data.