• Title/Summary/Keyword: underground cavities

Search Result 84, Processing Time 0.029 seconds

Prediction of ground-condition ahead of tunnel face using electromagnetic wave - analytical study (전자기파를 이용한 터널전방 예측 -해석기법 중심으로)

  • Choi, Jun-Su;Cho, Gye-Chun;Lee, Geun-Ha;Yoon, Ji-Nam
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.6 no.4
    • /
    • pp.327-343
    • /
    • 2004
  • During tunnel construction, ground failures often occur due to existence of weak zones, such as faults, joints, and cavities, ahead of tunnel face. It is hard to detect effectively weak zones, which can lead underground structure to fail after excavation and before supporting, by using conventional characterization methods. In this study, an enhanced analytical method of predicting weak zones ahead of tunnel face is developed to overcome some problems in the conventional geophysical exploration methods. The analytical method is based on Coulomb's and Gauss' laws with considering the characteristics of electric fields subjected to rock mass. Using the developed method, closed form solutions are obtained to detect a spherical shaped zone and an oriented fault ahead of tunnel face respectively. The analytical results suggest that the presence of weak zones and their sizes, location, and states can be accurately predicted by combining a proper inversion process with resistance measured from several electrodes on the tunnel face. It appears that the skin depth or resistivity in rock mass is affected by the diameter of tunnel face, natural electric potential and noises induced by experimental measurement and spatial distribution of uncertain properties. The developed analytical solution is verified through experimental tests. About 1800 concrete blocks of 5cm by 5cm by 5cm in size are prepared and used to model a joint rock mass around tunnel face. Weak zones are simulated ahead of tunnel face with a material which has relatively higher conductivity than concrete blocks. Experimental results on the model test show a good agreement with analytical results.

  • PDF

Analysis of the Effect of Pavement Crack Depth of the Cavity Management Grade (포장 균열 깊이가 공동 관리 등급에 미치는 영향 분석)

  • Park, Jeong Jun
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.3
    • /
    • pp.449-457
    • /
    • 2020
  • Purpose: The Seoul Metropolitan Government classifies the cavity risks into emergency, priority, general, and observation grades in consideration of the cavity size, asphalt pavement thickness, and pavement depth based on the cavity management grade criteria of Seoul. In this study, the depth of cracking was measured at 17 cracks identified by checking the pavement condition of the cavity at 265 cavities found in the 2019 cavity investigation service. Method: In the first phase, crack width and depth were measured using a vernier caliper, taper gauge, and depth gauge to check the cracks of the identified cavities. In the second phase, the location of the largest crack in the upper road surface was confirmed, and A.C. was drilled to further measure the crack depth. Results: As a result, the cavity management level was raised in nine of the 17 test cavity identified. Therefore, in case of emergency and priority recovery, the grade should be adjusted according to the depth of pavement crack and the thickness of residual A.C. pavement. Conclusion: In the case of cracks in the upper part of the cavity, the crack progression must be determined through the perforation and the remaining asphalt concrete thickness must be determined to determine the cavity grade.

Analysis of the crack propagation rules and regional damage characteristics of rock specimens

  • Li, Yangyang;Xu, Yadong;Zhang, Shichuan;Fan, Jing;Du, Guobin;Su, Lu;Fu, Guangsheng
    • Geomechanics and Engineering
    • /
    • v.24 no.3
    • /
    • pp.215-226
    • /
    • 2021
  • To study the evolution mechanism of cracks in rocks with multiple defects, rock-like samples with multiple defects, such as strip-shaped through-going cracks and cavity groups, are used, and the crack propagation law and changes in AE (acoustic emission) and strain of cavity groups under different inclination angles are studied. According to the test results, an increase in the cavity group inclination angle can facilitate the initial damage degree of the rock and weaken the crack initiation stress; the initial crack initiation direction is approximately 90°, and the extension angle is approximately 75~90° from the strip-shaped through-going cracks; thus, the relationship between crack development and cavity group initiation strengthens. The specific performance is as follows: when the initiation angle is 30°, the cracks between the cavities in the cavity group develop relatively independently along the parallel direction of the external load; when the angle is 75°, the cracks between the cavities in the cavity group can interpenetrate, and slip can occur along the inclination of the cavity group under the action of the shear mechanism rupture. With the increase in the inclination angle of the cavity group, the AE energy fluctuation frequency at the peak stress increases, and the stress drop is obvious. The larger the cavity group inclination angle is, the more obvious the energy accumulation and the more severe the rock damage; when the cavity group angle is 30° or 75°, the peak strain of the local area below the strip-shaped through-going fracture plane is approximately three times that when the cavity group angle is 45° and 60°, indicating that cracks are easily generated in the local area monitored by the strain gauge at this angle, and the further development of the cracks weakens the strength of the rock, thereby increasing the probability of major engineering quality damage. The research results will have important reference value for hazard prevention in underground engineering projects through rock with natural and artificial defects, including tunnels and air-raid shelters.

High Resolution for Shallow Seismic Reflection (Applied to the Underground Cavity) (천부층 지진파 반사에 대한 해상도 (지하 공동에 응용))

  • 김소구
    • The Journal of Engineering Geology
    • /
    • v.3 no.2
    • /
    • pp.167-176
    • /
    • 1993
  • The high resolution studies for shallow seismic reflection are carried out using 24-channel seismograph and the high sensitivity geophone(50-500Hz). In order to study the underground structures such as small faults, fractures, cracks and cavities, it is of great importance to enhance high resolution of the seisrnic records for the targets vertically and laterally. In analysis of high resolution seismic reflection, Nyquist frequency($F_N$) should be lager than the highest frequency in the records and the highest wave number should not be exceed the Nyquist wave number($1/2{\Delta}x$). The highest frequency above the Nyquist will be removed using low pass filter or antialias filter. The trace interval Ax should be taken into account so that the highest wave number(f/v) can be less than $1/2{\Delta}x$. The Fraunhofer diffraction of a hyperbola seismic section above the tunnel appeares on the common offset method, and little first arrivals of direct wave on the single-end shooting, delayed strong impulsive reflections are also shown above the tunnel. Ray Method(Cherveney and Psencik, 1983) also represents the same results that the reflected waves from the tunnel are delayed and single impulsive with little first arrivals, while transrnitted waves through the tunnel are delayed with low frequency.

  • PDF

A methodology for Identification of an Air Cavity Underground Using its Natural Poles (물체의 고유 Pole을 이용한 지하 속의 빈 공간 식별 방안)

  • Lee, Woojin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.566-572
    • /
    • 2021
  • A methodology for the identification and coordinates estimation of air cavities under urban ground or sandy soil using its natural poles and natural resonant frequencies is presented. The potential of this methodology was analyzed. Simulation models of PEC (Perfect Electric Conductor)s with various shapes and dimensions were developed using an EM (Electromagnetic) simulator. The Cauchy method was applied to the obtained EM scattering response of various objects from EM simulation models. The natural poles of objects corresponding to its instinct characterization were then extracted. Thus, a library of poles can be generated using their natural poles. The generated library of poles provided the possibility of identifying a target by comparing them with the computed natural poles from a target. The simulation models were made assuming that there is an air cavity under urban ground or sandy soil. The response of the desired target was extracted from the electromagnetic wave scattering data from its simulation model. The coordinates of the target were estimated using the time delay of the impulse response (peak of the impulse response) in the time domain. The MP (Matrix Pencil) method was applied to extract the natural poles of a target. Finally, a 0.2-m-diameter spherical air cavity underground could be estimated by comparing both the pole library of the objects and the calculated natural poles and the natural resonant frequency of the target. The computed location (depth) of a target showed an accuracy of approximately 84 to 93%.

Korea Stress Map 2020 using Hydraulic Fracturing and Overcoring Data (수압파쇄와 오버코어링 자료를 활용한 한국응력지도 2020)

  • Kim, Hanna;Synn, Joong-Ho;Park, Chan;Song, Won Kyong;Park, Eui Seob;Jung, Yong-Bok;Cheon, Dae-Sung;Bae, Seongho;Choi, Sung-Oong;Chang, Chandong;Min, Ki-Bok
    • Tunnel and Underground Space
    • /
    • v.31 no.3
    • /
    • pp.145-166
    • /
    • 2021
  • Korea Stress Map database is built by integrating actual data of 1,400 in-situ stress measurements using hydraulic fracturing and overcoring method in South Korea. Korea Stress Map 2020 is presented based on the guideline proposed by World Stress Map Project. As detailed data, stress ratio and maximum horizontal stress direction distribution for each region are also presented. The dominant maximum horizontal stress direction in the Korean Peninsula is from northeast to southeast, and the magnitude of the in-situ stress is relatively distributed. There is some stress heterogeneity caused by local characteristics such as topographical and geological properties. We investigated case studies in which the in-situ stress was affected by mountainous topography, difference in rock quality of fracture zone, presence of mine or underground cavities, and geological structure of fault zone.

A Case Study of Site Investigation and Ground Stability Analysis for Diagnosis of Subsidence Occurrence in Limestone Mine (석회석 광산 지역의 지반침하 원인 규명을 위한 현장조사와 지반 안정성 분석 사례)

  • Lee, Seung-Joong;Kim, Byung-Ryeol;Choi, Sung-Oong;Oh, Seok-Hoon
    • Tunnel and Underground Space
    • /
    • v.25 no.4
    • /
    • pp.332-340
    • /
    • 2015
  • Ground subsidence occurring in mine area can cause an enormous damage of loss of lives and properties, and a systematic survey should be conducted a series of field investigation and ground stability analysis in subsidence area. This study describes the results from field investigation and ground stability analysis in a limestone mine located in Cheongwon-gun, Chungcheongbuk-do, Korea. Rock mechanical measurements and electrical resistivity surveys are applied to obtain the characteristics of in-situ rock masses and the distribution patterns of subsurface weak zone, and their results are extrapolated in numerical analysis. From the field investigation and stability analysis, it is concluded that the subsidence occurrence in this limestone mine is caused mainly by subsurface limestone cavities.

3D gravity inversion with Euler deconvolution as a priori information (오일러 디컨벌루션을 사전정보로 이용한 3 차원 중력 역산)

  • Rim, Hyoung-Rae;Park, Yeong-Sue;Lim, Mu-Taek;Koo, Sung-Bon;Kwon, Byung-Doo
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.1
    • /
    • pp.44-49
    • /
    • 2007
  • It is difficult to obtain high-resolution images by 3D gravity inversion, because the problem is extremely underdetermined - there are too many model parameters. In order to reduce the number of model parameters we propose a 3D gravity inversion scheme utilising Euler deconvolution as a priori information. The essential point of this scheme is the reduction of the nonuniqueness of solutions by restricting the inversion space with the help of Euler deconvolution. We carry out a systematic exploration of the growing body process, but only in the restricted space within a certain radius of the Euler solutions. We have tested our method with synthetic gravity data, and also applied it to a real dataset, to delineate underground cavities in a limestone area. We found that we obtained a more reasonable subsurface density image by means of this combination between the Euler solution and the inversion process.

GIS for Subsidence Analysis by Considering Surface Condition (지표면의 조건을 고려한 지반침하 분석용 GIS)

  • 권광수;이준용;박형동
    • Economic and Environmental Geology
    • /
    • v.34 no.6
    • /
    • pp.595-600
    • /
    • 2001
  • Recently, interests in subsidence hazard have been increased due to the underground construction such as subway construction and managements of abandoned mines. GIS analysis of subsidence hazard has a lot of advantages in handling of spatial data and managing database. For better result of GIS analysis, there are some necessities of modifying previous subsidence theory and model. To take surface profile into account allows the application of complicated topology. Furthermore. for 3-dimensional analysis. two subsidence profile curves that are perpendicular to each other should be considered simultaneously. Through these modifications, the model for subsidence analysis using GIS can be established. With ideal case of cavities and other conditions, GIS analysis was accomplished and meaningful results were produced. More realistic properties of cavity. soil layers, groundwater condition and topology will enable GIS analysis method to produce more reliable result and to widen the area of applications.

  • PDF

Experimental Study for Confirmation of Relaxation Zone in the Underground Cavity Expansion (지중 내 공동 확장에 따른 이완영역 확인을 위한 실험적 연구)

  • Kim, Youngho;Kim, Hoyeon;Kim, Yeonsam;You, Seung-Kyong;Han, Jung-Geun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.4
    • /
    • pp.231-240
    • /
    • 2017
  • Recently, there have been frequent occurrences of ground sink in the urban area, which have resulted in human and material damage and are accompanied by economic losses. This is caused by artificial factors such as soil loss, poor compaction, horizontal excavation due to the breakage of the aged sewage pipe, and lack of water proof at vertical excavation. The ground sink can be prevented by preliminary restoration and reinforcement through exploration, but it can be considered that it is not suitable for urgent restoration by the existing method. In this study, a model experiment was carried out to simulate the in-ground cavities caused by groundwater flow for developing non-excavation urgent restoration in underground cavity and the range of the relaxation zone was estimated by detecting the around the cavity using a relaxation zone detector. In addition, disturbance region and relaxation region were separated by injecting gypsum into cavity formed in simulated ground. The shape of the underground cavity due to the groundwater flow was similar to that of the failure mode III formed in the dense relative density ground due to water pipe breakage in the previous study. It was confirmed that the relaxed region detected using the relaxation zone detector is formed in an arch shape in the cavity top. The length ratio of the relaxation region to the disturbance region in the upper part of the cavity center is 2: 1, and it can be distinguished by the difference in the decrease of the shear resistance against the external force. In other words, it was confirmed that the secondary damage should not occur in consideration of the expandability of the material used as the injecting material in the pre-repair and reinforcement, and various ground deformation states will be additionally performed through additional experiments.