• Title/Summary/Keyword: under-footing

Search Result 93, Processing Time 0.025 seconds

Behavior of eccentrically inclined loaded footing resting on fiber reinforced soil

  • Kaur, Arshdeep;Kumar, Arvind
    • Geomechanics and Engineering
    • /
    • v.10 no.2
    • /
    • pp.155-174
    • /
    • 2016
  • A total of 104 laboratory model tests on a square footing subjected to eccentrically inclined loads supported by sand reinforced with randomly distributed polypropylene fibers were conducted in order to compare the results with those obtained from unreinforced sand and with each other. For conducting the model tests, uniform sand was compacted in a test box at one particular relative density of compaction. The effect of percentage of reinforcement used, thickness of the reinforced layer, angle of inclination of load to vertical and eccentricity of load applied on various prominent factors such as ultimate load, vertical settlement, horizontal deformation and tilt were investigated. An improvement in ultimate load, vertical settlement, horizontal deformation and tilt of foundation was observed with an increase in the percentage of fibers used and thickness of reinforced sand layer under different inclinations and eccentricities of load. A statistical model using non-linear regression analysis based on present experimental data for predicting the vertical settlement ($s_p$), horizontal deformation ($hd_p$) and tilt ($t_p$) of square footing on reinforced sand at any load applied was done where the dependent variable was predicted settlement ($s_p$), horizontal deformation ($hd_p$) and tilt ($t_p$) respectively.

Cyclic loading response of footing on multilayered rubber-soil mixtures

  • Tafreshi, S.N. Moghaddas;Darabi, N. Joz;Dawson, A.R.
    • Geomechanics and Engineering
    • /
    • v.14 no.2
    • /
    • pp.115-129
    • /
    • 2018
  • This paper presents a set of results of plate load tests that imposed incremental cyclic loading to a sandy soil bed containing multiple layers of granulated rubber-soil mixture (RSM) at large model scale. Loading and unloading cycles were applied with amplitudes incrementally increasing from 140 to 700 kPa in five steps. A thickness of the RSM layer of approximately 0.4 times the footing diameter was found to deliver the minimum total and residual settlements, irrespective of the level of applied cyclic load. Both the total and residual settlements decrease with increase in the number of RSM layers, regardless of the level of applied cyclic load, but the rate of reduction in both settlements reduces with increase in the number of RSM layers. When the thickness of the RSM layer is smaller, or larger, settlements increase and, at large thicknesses may even exceed those of untreated soil. Layers of the RSM reduced the vertical stress transferred through the foundation depth by distributing the load over a wider area. With the inclusion of RSM layers, the coefficient of elastic uniform compression decreases by a factor of around 3-4. A softer response was obtained when more RSM layers were included beneath the footing damping capacity improves appreciably when the sand bed incorporates RSM layers. Numerical modeling using "FLAC-3D" confirms that multiple RSM layers will improve the performance of a foundation under heavy loading.

Analysis for Bearing Capacity of Paper Ash in Industrial Waste as Filling Material (성토재로서 산업폐기물 제지회의 지지력 분석)

  • Lee, Cheo-Keun;Ahn, Kwang-Kuk;Heo, Yol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.2 no.2
    • /
    • pp.13-22
    • /
    • 2001
  • In this study, centrifuge model tests were fulfilled to investigate the characteristics of bearing capacity of paper ash as a filling material. The model tests were done varying the footing width and gravity level. The settlement and vertical soil pressure by loading were measured. The results from the tests were compared with the one from FLAC program using finite difference method and bearing capacity theory. After all, it was shown that the characteristics of load-settlement represented the local shear failure, which the settlement ratio s/B showed inflection point around 25~30%. As g-level and footing width were increasing, the load strength was increasing. The ultimate bearing capacity from the tests was very closed the results from Terzaghi's theory. As the distance from footing center was increasing, the vertical soil pressure was decreasing. If E/B is higher than 7, the stress by loading was almost increasing. The vertical displacement from loading was the largest one around under the footing and was almost occurred when the depth>4cm and E/B is higher than 5.0.

  • PDF

Experimental Study on the Load Sharing Ratio of G개up Pile (무리말뚝의 하중분담률에 관한 실험적 연구)

  • Kwon Oh-Kyun;Oh Se-Bung;Kim Jin-Bok
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.5
    • /
    • pp.51-58
    • /
    • 2005
  • In this study, the large scale model tests were executed to estimate the Load Sharing Ratio (LSR) of raft in a piled footing under various conditions. The conditions such as the subsoil type, pile length, pile spacing, away type and pile installation method etc. were varied in the pile loading tests about the free-standing group piles and a piled footing. As a result of this study, it was found that there was no difference in the load-settlement curves, resulting from the pile installation method and subsoil type. The piles supported most of the external load until a yielding load of the piled footing, but the raft supported a considerable load after a yielding load. As the relative density of sands increased, the LSR decreased. As the pile spacing was wider and the pile length increased, there was a tendancy for the LSR to increase. But it was also found that the LSR was not affected by the pile installation method and the subsoil type.

The Behavior of Shallow Foundation under Eccentric Loads by Centrifuge Model Experiment (원심모형시험에 의한 편심하중을 받는 얕은기초의 거동)

  • Yoo, Nam-Jae;Lee, Myung-Woog;Park, Byung-Soo;Jeong, Gil-Soo
    • Journal of Industrial Technology
    • /
    • v.22 no.A
    • /
    • pp.229-240
    • /
    • 2002
  • This paper is an experimental and numerical work of Investigating the bearing capacity of shallow foundation of rubble mound under eccentric loads. Parametric centrifuge model tests at the 50g level environments with the model footings in the form of strip footing were performed by changing the loading location of model footing, relative density and materials for ground foundation. For the model ground, crushed rock sampled from a rocky mountain was prepared with a grain size distribution of having an identical coefficient of uniformity to the field condition. Model ground was also prepared with relative densities of 50 % and 80 %. For loading condition, model tests with and without eccentric load were carned out to investigate the effect of eccentric loads and a numerical analysis with the commertially available software of FLAC was performed. For numerical estimation with FLAC, the hyperbolic model of a nonlinear elastic constitutive relationship was used to simulate the stress-stram constitutive relationship of model ground and a series of triaxial compression test were carried out to find the parameters for this model Test results were analyzed and compared with Meyerhof method (1963), effective area method based on the limit equilibrium method, and a numerical analysis with FLAC.

  • PDF

Test and Analysis of Fall-Of-Potential at Towers of Energized Transmission Lines (운전 중인 송전선로의 철탑 전위강하시험과 해석)

  • Kang, Yeon-Wook;Lee, Dong-Il;Shim, Eung-Bo;Kim, Kyung-Chul;Choi, Jong-Kee
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.5
    • /
    • pp.195-201
    • /
    • 2006
  • Tower footing resistance and fault current division factor are important design factors for evaluation of the lightning performance of the transmission line and/or design of the grounding electrode system. The periodic measurement of those factors are also important to verify that the grounding performance of the towers has been maintained good. However, the direct measurement of those factors in operating or energized condition is very difficult because of many practical reasons, such as the difficulty of disconnecting overhead groundwires from the tower under test. With supports by GECOL (General Electricitiy Company of Libya), we had a special chance to conduct Fall-Of-Potential (FOP) test on the energized 220 kV transmission towers before and after disconnecting the overhead groundwires from the towers under test. In this paper, the FOP test results on the towers and the fault current division factors estimated from the comparision of the FOP tests with and without overhead groundwires were presented. The computer models for the FOP test simulations were also constructed to find that the simulated results agreed very well with the measured ones.

Numerical investigations of structure-soil-structure interaction on footing forces due to adjacent building

  • Shrish Chandrawanshi;Vivek Garg
    • Earthquakes and Structures
    • /
    • v.26 no.6
    • /
    • pp.477-487
    • /
    • 2024
  • The interaction between multiple structures through the supporting soil media, known as structure-soil-structure interaction (SSSI), has become an increasingly important issue due to rapid urbanization. There is a need to investigate the effect of SSSI on the structural response of buildings compared to non-interaction analysis (NIA) and soil-structure interaction (SSI) analysis. In the present study, two identical 4-bay×4-bay, three-story RCC buildings are modeled adjacent to each other with a soil domain beneath it to investigate the effect of SSSI on the forces experienced by footings under gravity and seismic load cases. The ANSYS software is used for modeling various non-interaction and interaction models which work on the principle of FEM. The results indicate that in most of the footings, the SSSI effect causes a significant redistribution of forces compared to SSI and NIA under both gravity and seismic load cases. The maximum interaction effect is observed on the footings that are closer to the adjacent building. The axial force, shear force and bending moment values on these footings show that SSI causes a significant increase in these values compared to non-interaction analysis but the presence of adjacent building relieves these forces significantly.

Finite Element Analysis on the Behavior of Soil under a Footing (기초(基礎)아래 지반(地盤)의 거동에 대한 유한요소(有限要所) 해석(解析))

  • Lee, Yeong Saeng;Kim, Myoung Mo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.1
    • /
    • pp.167-176
    • /
    • 1991
  • Finite element programs are developed, adopting the hyperbolic model and the Cam-clay model. In the hyperbolic model, a new model taking into account the volume change during shear is proposed and a new technique considering the density change underneath a footing is proposed. And a computing algorithm considered as more reasonable than existing one is presented. In the Cam-clay model, the deveoloped program is applied to sand, the case not recorded much, and then it is tried to analiza the behavior of sand from the viewpoint of the critical state concept. For this, the conventional CD triaxial compression tests and the footing model tests are carried out. The results are improved by 60 percent by using the modified hyperbolic model proposed. When the Cam-clay model is applied to sand, a model reflecting the overconsolidation effects and a computing algorithm accounting for the strain softening are needed. The results obtained by using the Cam-clay model are not much influenced by the value of the initial poisson's ratio, but those of the modified hyperbolic model are much influenced by that. So th values of the initial poisson's ratio must be selected deliberately in the numerical analysis.

  • PDF

Behavior of dry medium and loose sand-foundation system acted upon by impact loads

  • Ali, Adnan F.;Fattah, Mohammed Y.;Ahmed, Balqees A.
    • Structural Engineering and Mechanics
    • /
    • v.64 no.6
    • /
    • pp.703-721
    • /
    • 2017
  • The experimental study of the behavior of dry medium and loose sandy soil under the action of a single impulsive load is carried out. Different falling masses from different heights were conducted using the falling weight deflectometer (FWD) to provide the single pulse energy. The responses of soils were evaluated at different locations (vertically below the impact plate and horizontally away from it). These responses include; displacements, velocities, and accelerations that are developed due to the impact acting at top and different depth ratios within the soil using the falling weight deflectometer (FWD) and accelerometers (ARH-500A Waterproof, and Low capacity Acceleration Transducer) that are embedded in the soil and then recorded using the multi-recorder TMR-200. The behavior of medium and loose sandy soil was evaluated with different parameters, these are; footing embedment, depth ratios (D/B), diameter of the impact plate (B), and the applied energy. It was found that increasing footing embedment depth results in: amplitude of the force-time history increases by about 10-30%. due to increase in the degree of confinement with the increasing in the embedment, the displacement response of the soil will decrease by about 25-35% for loose sand, 35-40% for medium sand due to increase in the overburden pressure when the embedment depth increased. For surface foundation, the foundation is free to oscillate in vertical, horizontal and rocking modes. But, when embedding a footing, the surrounding soil restricts oscillation due to confinement which leads to increasing the natural frequency, moreover, soil density increases with depth because of compaction, that is, tendency to behave as a solid medium.

A laboratory and numerical study on the effect of geogrid-box method on bearing capacity of rock-soil slopes

  • Moradi, Gholam;Abdolmaleki, Arvin;Soltani, Parham;Ahmadvand, Masoud
    • Geomechanics and Engineering
    • /
    • v.14 no.4
    • /
    • pp.345-354
    • /
    • 2018
  • Currently, layered geogrid method (LGM) is the commonly practiced technique for reinforcement of slopes. In this paper the geogrid-box method (GBM) is introduced as a new approach for reinforcement of rock-soil slopes. To achieve the objectives of this study, a laboratory setup was designed and the slopes without reinforcements and reinforced with LGM and GBM were tested under the loading of a circular footing. The effect of vertical spacing between geogrid layers and box thickness on normalized bearing capacity and failure mechanism of slopes was investigated. A series of 3D finite element analysis were also performed using ABAQUS software to supplement the results of the model tests. The results indicated that the load-settlement behavior and the ultimate bearing capacity of footing can be significantly improved by the inclusion of reinforcing geogrid in the soil. It was found that for the slopes reinforced with GBM, the displacement contours are widely distributed in the rock-soil mass underneath the footing in greater width and depth than that in the reinforced slope with LGM, which in turn results in higher bearing capacity. It was also established that by reducing the thickness of geogrid-boxes, the distribution and depth of displacement contours increases and a longer failure surface is developed, which suggests the enhanced bearing capacity of the slope. Based on the studied designs, the ultimate bearing capacity of the GBM-reinforced slope was found to be 11.16% higher than that of the slope reinforced with LGM. The results also indicated that, reinforcement of rock-soil slopes using GBM causes an improvement in the ultimate bearing capacity as high as 24.8 times more than that of the unreinforced slope.