• Title/Summary/Keyword: uncut chip area

Search Result 6, Processing Time 0.021 seconds

A Numerical Simulation Model for the Face Milling Operation (수치해석법에 의한 면삭밀링 작업에서의 절삭력과 표면조도에 관한 연구)

  • 홍민성
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1995.10a
    • /
    • pp.68-75
    • /
    • 1995
  • The milling process is one of the most important metal removal processes in industry. Due to the complexities inherent to the cutter insert geometry and the milling cutter kinematics, these processes leave an analytically difficult to predict texture on the machined surface's hills and valleys. The instantaneous uncut chip cross sectional area may be estimated by the relative position between the workpiece and the cutter inserts. furthermore, since the cutting forces are proportional to the instantaneous uncut chip cross sectional area, the cutting forces in face milling operations can not be estimated easily. A new simulation program which is based upon the numerical method has been proposed to estimate the cutting force components, with the ability to predict the machined surface texture left by the face milling operation.

  • PDF

A Numerical Simulation on Cutting Force and Surface Roughness of the Face Milling (수치해석법에 의한 면삭밀링 작업에서의 절삭력과 표면거칠기에 관한 연구)

  • 홍민성
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.4 no.4
    • /
    • pp.16-24
    • /
    • 1995
  • The milling process is one of the most important metal removal processes in industry. due to the complexities inherent to the cutter insert geometry and the milling cutter kinematics, these processes leave an analytically difficult to predict texture on the machined surface's hills and valleys. The instantaneous uncut chip cross sectional area may be estimated by the relative position between the workpiece and the cutter inserts. Furthermore, since the cutting forces are proportional to the instantaneous uncut chip cross sectional area, the cutting forces in face milling operations can not be estimated easily. A new simulation program which is based upon the numerical method has been proposed to estimate the cutting force components, with the ability to predict the machined surface texture left by the face milling.

  • PDF

A study on the cutting characteristics of SUS304 by flank wear (Flank 마모에 의한 SUS304의 절삭특성에 관한 연구)

  • Yu, Ki-Hyun;Cheong, Chin-Yong;Seo, Nam-Seob
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.2
    • /
    • pp.182-188
    • /
    • 1994
  • This expermintal study is intended to investigate he development of flank wear in turning os SUS304 which is used in industrial applications and is acknowledged as a machining difficult material. In cutting process, change of velocity, change of feed, and change of depth of cut were investigated about the effect of flank wear, and slenderness ratio is also investigated. The variations of unit cutting force with the change of rake angle and the change of uncut chip area are observed. The friction angles are calculated for the change friction force and observed. The friction angles are calculated for the change friction force and normal forcd on the different rake angles. From this experimental study, the following results can be said. 1. Under the high cutting speed condition, the flaank wear is affected by the feed and depth of cut, but the influence of feed and depth of cut to the flank wear is reduced when the velocity is low. 2. The smaller slenderness ratio is, the shorter the tool life results in high cutting speed, and the lower cutting speed is, the lower the effect of slenderness ratio to the flank wear is. 3. Using the characteristics of force-RMS, the flank wear of a tool can be detected. There are almost no differences between the RMS characteristics of cutting force and feed force.

  • PDF

A Study on Cutting Force Characteristics of Non-ferrous steel in Diamond Turning Process (다이아몬드 터닝 가공에서의 비철금속에 대한 미세절삭력 특성 연구)

  • 정상화;김상석;차경래;김현욱;나윤철;홍권희;김건희;김효식
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.38-42
    • /
    • 2001
  • A complete quantitative understanding of DT has been difficult because the process represents such a broad field of research. The experimental measurement of tool force is a single area of DT which still covers a wide range of possibilities. There are numerous parameters of the process which affect cutting forces. There are also many turnable materials of current interest. To obtain information toward a better understanding of the process, a few cutting parameters and materials were selected for detail study. It was decided that free-oxygen copper and 6061-T6 alloy aluminum would be the primary test materials. There are materials which other workers have also used because of there wide use in reflective applications. The experimental phase of the research project began by designing tests to isolate certain cutting parameters. The parameters chosen to study were those that affected the cross-sectional area of the uncut chip. The specific parameters which cause this area to vary are the depth of cut and infeed per revolution, or feedrates. Other parameter such a tool nose radius and surface roughness were investigated as they became relevant to the research.

  • PDF

A Study on Cutting Force Characteristics in Diamond Turning Process (다이아몬드 터닝 가공공정에서의 미세절삭력 특성 연구)

  • 정상화;김상석;차경래;김건희;김근홍
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.957-960
    • /
    • 1997
  • A complete quantitative understanding of DT has been difficult because the process represents such s broad field of research. The experimental measurement of tool force is a single area of DT which still covers a wide range of possibilities. Here are numerous parameters of the process which affect cutting forces. There are also many turnable materials of current interest. To obtain information toward a better understanding of the process, a few cutting parameters and materials were selected for detail study. It was decided that free-oxygen copper and 6061-T6 alloy aluminum would be the primary test materials. There are materials which other workers have also used because of there wide use in reflective applications. The experimental phase of the research project began by designing tests to isolate certain cutting parameters. The parameters chosen to study were those that affected the cross-sectional area of the uncut chip. The specific parameters which cause this area to vary are the depth of cut and infeed per revolution, or feedrates. Other parameter such a tool nose radius and surface roughness were investigated as they became relevant to the research.

  • PDF

Mechanism of Micro-V Grooving with Single Crystal Diamond Tool (단결정 다이어몬드 공구를 이용한 Micro-V 홈 가공기구)

  • Park D.S.;Seo T.I.;Kim J.K.;Seong E.J.;Han J.Y.;Lee E.S.;Cho M.W.;Choi D.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1223-1227
    • /
    • 2005
  • Fine microgroove is the key component to fabricate micro-grating, micro-grating lens and so on. Conventional groove fabrication methods such as etching and lithography have some problems in efficiency and surface integrity. This study deals with the creation of ultra-precision micro grooves using non-rotational diamond tool and CNC machining center. The shaping type machining method proposed in the study allows to produce V-shaped grooves of $40\mu{m}$ in depth with enough dimensional accuracy and surface. For the analysis of machining characteristics in micro V-grooving, three components of cutting forces and AE signal are measured and processed. Experimental results showed that large amplitude of cutting forces and AE appeared at the beginning of every cutting path, and cutting forces had a linear relation with the cross-sectional area of uncut chip thickness. From the results of this study, proposed micro V-grooving technique could be successfully applied to forming the precise optical parts like prism patterns on light guide panel of TFT-LCD.

  • PDF