• 제목/요약/키워드: uncoupled protein

검색결과 6건 처리시간 0.018초

체감의이인탕(體減薏苡仁湯)이 비만유도 흰쥐의 체중, 지방조직, 혈액변화, leptin과 Uncoupled protein에 미치는 영향 (Effects of Chegameyiin-tang extract on the change of the weight, tissue in epididymal fat, blood, leptin and uncoupled protein in visceral fat of obesity rats induced by high fat diet)

  • 김길수;송재철
    • 한방비만학회지
    • /
    • 제1권1호
    • /
    • pp.85-100
    • /
    • 2001
  • In Oriental medicine, there has been a theory that the deficiency of the Qi(氣) and the Phlegm(濕)-Damp(痰) bring Obesity. And so a clinically representative herb-medicine of the obesity treatments is Chegameyiin-tang . We observed the effects of Chegameyiin-tang on the fat tissues and what the function of Chegameyiin-tang is. These experimental studies were designed to investigate the effects of Chegameyiin-tang on the weight and lipid metabolism of obesity rats induced by high fat diet. And what is changed in the blood and how the leptin and uncoupled protein is affected. The measurement has been performed on (1) the weight of obese rats fed high fat diet, (2) the average size and number of epididymal fat cells, (3) the total cholesterol, triglyceride, glucose. and free fatty acids in the blood. and (4) the leptin and uncoupled protein in the blood are observed. The results are as follows; 1. In the sample group, the weight decrease occured significantly throughout the whole research period than that of control group. 2. In the sample group, epididymal fat weight showed significantly decrease in the 8th and 14th weeks than that of control group.3. In the sample group, epididymal fat cell size was decreased significantly in the 8th and 14th weeks than that of control group. 4. In the sample group, total cholesterol. triglyceride and glucose increased rather than control group in 8 weeks, those decreased significantly in 14 weeks. 5. In the sample group, free fatty acids and insulin increased rather than control group in 8 weeks. those showed some decrease in 14 weeks . 6. In the sample group, leptin decreased significantly than control group in 8, 14 weeks. Uncoupled protein showed some decrease in 8 weeks. that decreased significantly in 14 weeks.

  • PDF

Repression of the F-box protein Skp2 is essential for actin damage-induced tetraploid G1 arrest

  • Jo, Yongsam;Shin, Deug Y.
    • BMB Reports
    • /
    • 제50권7호
    • /
    • pp.379-383
    • /
    • 2017
  • We previously reported that p53 plays a role as a key regulator in the tetraploid G1 checkpoint, which is activated by actin damage-induced cytokinesis blockade and then prevents uncoupled DNA replication and nuclear division without cytokinesis. In this study, we investigated a role of Skp2, which targets CDK2 inhibitor p27/Kip1, in actin damage-induced tetraploid G1 arrest. Expression of Skp2 was reduced, but p27/Kip1 was increased, after actin damage-induced cytokinesis blockade. The role of Skp2 repression in tetraploid G1 arrest was investigated by analyzing the effects of ectopic expression of Skp2. After actin damage, ectopic expression of Skp2 resulted in DNA synthesis and accumulation of multinucleated cells, and ultimately, induction of apoptosis. These results suggest that Skp2 repression is important for sustaining tetraploid G1 arrest after cytokinesis blockade and is required to prevent uncoupled DNA replication and nuclear division without cytokinesis.

비만증 -내과적 이해 및 치료- (Obesty - Medical Approach and Treatment -)

  • 오연상
    • 정신신체의학
    • /
    • 제3권2호
    • /
    • pp.197-206
    • /
    • 1995
  • Obesity is a major nutritional problem in the developed countries. The prevalence of obesity may range from 10 to 50 per rent or mort of adult population and it may be increasing tendency. Many efforts have been made to understand the pathogenesis of obesity, but except a few metabolic obesities in the most of obese patients, the mechanisms are not understood. The treatment modalities of obesity, ranging from dietary and pubilc health intervention through the pharmacological and surgical therapy, have been developed and tested. In the obese patients mortalities and mobilities are significantly increased than non obese subjects due to hypertension, diabetics, and other problems. There are four possible mechanisms by which energy balance might be altered to enhance metabolic efficiency. futile metabolic pathway, alteration of protein rum over, alteration in sodium-potassium ATPase and alteration in uncoupled oxidation in brown adipose tissue are considered as possible mechanisms. Low calory and very low calory diets are recommended as a dietary program. Several pharmacological agent such as benzphetamine, fenfluramine, mazindol and fluoxetin are currently popular drugs for the treatment of obesity.

  • PDF

Decrease in $Ca^{2+}$ Storage in the Cardiac Sarcoplasmic Reticulum of Diabetic Rat

  • Kim, Won-Tae;Kim, Hae-Won;Kim, Young-Kee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제2권6호
    • /
    • pp.725-732
    • /
    • 1998
  • In order to elucidate the molecular mechanism of the intracellular $Ca^{2+}$ overload frequently reported from diabetic heart, diabetic rats were induced by the administration of streptozotocin, the membrane vesicles of junctional SR (heavy SR, HSR) were isolated from the ventricular myocytes, and SR $Ca^{2+}$ uptake and SR $Ca^{2+}$ release were measured. The activity of SR $Ca^{2+}-ATPase$ was $562{\pm}14$ nmol/min/mg protein in control heart. The activity was decreased to $413{\pm}30$ nmol/min/mg protein in diabetic heart and it was partially recovered to $485{\pm}18$ nmol/min/mg protein in insulin-treated diabetic heart. A similar pattern was observed in SR $^{45}Ca^{2+}$ uptakes; the specific uptake was the highest in control heart and it was the lowest in diabetic heart. In SR $^{45}Ca^{2+}$ release experiment, the highest release, 45% of SR $^{45}Ca^{2+}$, was observed in control heart. The release of diabetic heart was 20% and it was 30% in insulin-treated diabetic heart. Our results showed that the activities of both SR $Ca^{2+}-ATPase$ and SR $Ca^{2+}$ release channel were decreased in diabetic heart. In order to evaluate how these two factors contribute to SR $Ca^{2+}$ storage, the activity of SR $Ca^{2+}-ATPase$ was measured in the uncoupled leaky vesicles. The uncoupling effect which is able to increase the activity of SR $Ca^{2+}-ATPase$ was observed in control heart; however, no significant increments of SR $Ca^{2+}-ATPase$ activities were measured in both diabetic and insulin-treated diabetic rats. These results represent that the $Ca^{2+}$ storage in SR is significantly depressed and, therefore, $Ca^{2+}-sequestering$ activity of SR may be also depressed in diabetic heart.

  • PDF

A Super-Absorbent Polymer Combination Promotes Bacterial Aggressiveness Uncoupled from the Epiphytic Population

  • Lee, Bo-Young;Kim, Dal-Soo;Ryu, Choong-Min
    • The Plant Pathology Journal
    • /
    • 제24권3호
    • /
    • pp.283-288
    • /
    • 2008
  • Plant leaf surface is an important niche for diverse epiphytic microbes, including bacteria and fungi. Plant leaf surface plays a critical frontline defense against pathogen infections. The objective of our study was to evaluate the effectiveness of a starch-based super-absorbent polymer(SAP) combination, which enhances water potential and nutrient availability to plant leaves. We evaluated the effect of SAP on the maintenance of bacterial populations. In order to monitor bacterial populations in situ, a SAP mixture containing Pseudomonas syringae pv. tabaci that expressed recombinant green fluorescent protein(GFPuv) was spray-challenged onto whole leaves of Nicotiana benthamiana. The SAP combination treatment enhanced bacterial robustness, as indicated by disease severity and incidence. Unexpectedly, bacterial numbers were not significantly different between leaves treated with the SAP combination and those treated with water alone. Furthermore, young leaves treated with the SAP combination had more severe symptoms and a greater number of bacterial spots caused by primary and secondary infections compared to young leaves treated with the water control. In contrast, bacterial cell numbers did not statistically differ between the two groups, which indicated that measurement of viable GFP-based bacterial spots may provide a more sensitive methodology for assessing virulence of bacterial pathogens than methods that require dilution plating following maceration of bacterial-inoculated leaf tissue. Our study suggests that the SAP combination successfully increased bacterial aggressiveness, which could either be used to promote the ability of biological agents to control weedy plants or increase the robustness of saprophytic epiphytes against competition from potentially harmful microbes.

SHORT-ROOT Controls Cell Elongation in the Etiolated Arabidopsis Hypocotyl

  • Dhar, Souvik;Kim, Jinkwon;Yoon, Eun Kyung;Jang, Sejeong;Ko, Kangseok;Lim, Jun
    • Molecules and Cells
    • /
    • 제45권4호
    • /
    • pp.243-256
    • /
    • 2022
  • Transcriptional regulation, a core component of gene regulatory networks, plays a key role in controlling individual organism's growth and development. To understand how plants modulate cellular processes for growth and development, the identification and characterization of gene regulatory networks are of importance. The SHORT-ROOT (SHR) transcription factor is known for its role in cell divisions in Arabidopsis (Arabidopsis thaliana). However, whether SHR is involved in hypocotyl cell elongation remains unknown. Here, we reveal that SHR controls hypocotyl cell elongation via the transcriptional regulation of XTH18, XTH22, and XTH24, which encode cell wall remodeling enzymes called xyloglucan endotransglucosylase/hydrolases (XTHs). Interestingly, SHR activates transcription of the XTH genes, independently of its partner SCARECROW (SCR), which is different from the known mode of action. In addition, overexpression of the XTH genes can promote cell elongation in the etiolated hypocotyl. Moreover, confinement of SHR protein in the stele still induces cell elongation, despite the aberrant organization in the hypocotyl ground tissue. Therefore, it is likely that SHR-mediated growth is uncoupled from SHR-mediated radial patterning in the etiolated hypocotyl. Our findings also suggest that intertissue communication between stele and endodermis plays a role in coordinating hypocotyl cell elongation of the Arabidopsis seedling. Taken together, our study identifies SHR as a new crucial regulator that is necessary for cell elongation in the etiolated hypocotyl.