• Title/Summary/Keyword: uncertainty sources

Search Result 278, Processing Time 0.024 seconds

A Krein Space Approach for Robust Extended Kalman Filtering on Mobile Robots in the Presence of Uncertainties

  • Jin, Seung-Hee;Park, Jin-Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1771-1776
    • /
    • 2003
  • In mobile robot navigation, one of the key problems is the pose estimation of the mobile robot. Although the odometry can be used to describe the motions of the mobile robots quite simple and accurately, the validities of the models are limited by a number of error sources contaminating the encoder outputs so that applying the conventional extended Kalman filter to these nominal model does not yield the satisfactory performance. As a remedy for this problem, we consider the uncertain nonlinear kinematic model of the mobile robot that contains the norm bounded uncertainties and also propose a new robust extended Kalman filter based on the Krein space approach. The proposed robust filter has the same recursive structure as the conventional extended Kalman filter and can hence be readily designed to effectively account for the uncertainties. The computer simulations will be given to verify the robustness against the parameter variation as well as the reliable performance of the proposed robust filter.

  • PDF

A new proposal for the appropriate quality control of driven piles by using set values (최종관입량을 기준으로 한 합리적인 말뚝 시공관리 방안)

  • 이명환;홍헌성;김성회;전영석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03a
    • /
    • pp.51-63
    • /
    • 2000
  • Because of simplicity and easiness, dynamic pile driving formulae have long been used by most of the field engineers for pile quality control purposes. Yet their reliability have been repeatedly reported unsuitable and the results can lead to significant errors. According to the research results by the authors, the two most important sources of unreliability of dynamic pile driving formulae are uncertainty in the estimation of hammer efficiency and time dependent characteristics of pile bearing capacity. Based on this finding a new method is proposed. By using the actual value of hammer efficiency the pile bearing capacity at the time of driving could be reasonably estimated. By performing restrike test sometime after pile installation, time effect coefficient could be determined. The effectiveness of the proposed method was proven in the actual construction project.

  • PDF

H infinity Controller Design for the Reactor Power Control System

  • Lee, Yoon-Joon
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.11a
    • /
    • pp.79-84
    • /
    • 1996
  • The robust controller for the nuclear reactor power control system is designed. The reactor model is set up by use of the point kinetics equations and the singly lumped energy balance equations. Since the model is different from the actual plant, the controller which makes the system robust is necessary. The perturbation of the actual plant is investigated with respect to several possible sources of uncertainty. Then the overall system is configured into the two port model and the $H_{\infty}$ controller is designed. The loop shaping and the permissible control rod speed are considered as the design constraints. The designed $H_{\infty}$ controller provides the sufficient margins for the robustness, and the system output as well as the control input satisfy their relevant requirements.

  • PDF

Study on Compressive Strength of Field-Cast Concrete (현장타설 콘크리트의 압축강도에 관한 연구)

  • 김상효;배규웅
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1989.10a
    • /
    • pp.69-72
    • /
    • 1989
  • It is widely recognized that the strength of reinforced concrete members has characteristics of random variations due to the variability of the mechanical properties of concrete and steel, the dimensional error as well as incorrect placement of reinforcing bars. In those sources of randomness, variations in concrete strength may be the one affecting the strength of R.C. members most. The concrete strength is usually assumed to have large uncertainty due to the variations in many factors, such as material properties, proportions of the concrete mix, methods of mixing, transporting, placing and curing, etc. In this study, the random characteristics inherent in the strength of field-cast concrete have been examined based on the data collected by testing standard cylinders made of field-cast concrete and cured under in-situ condition.

  • PDF

Modal Characteristics of Steel Plate-Girder Under Various Temperatures (강판형의 진동모드특성에 미치는 온도의 영향)

  • 김정태;윤재웅;백종훈
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.6
    • /
    • pp.58-64
    • /
    • 2003
  • The performance of vibration-based damage detection methods is dependent upon the accuracy of modal parameters measured from structures of interest. Vibration monitoring, performed on a structure under uncertain temperature conditions, results in the uncertainty in model parameters of the structure. In this study, an experiment on the effect of various temperatures on modal characteristics of steel plate-girders is presented. First, the model plate-girder used for the experiment is described. Second, natural frequencies measured from the structure, using two different excitation sources, are described. Third, natural frequencies measured from the structure, under various temperatures, are described. Finally, the relationship between measurement temperature and natural frequency is analyzed.

Probabilistic assessment on the basis of interval data

  • Thacker, Ben H.;Huyse, Luc J.
    • Structural Engineering and Mechanics
    • /
    • v.25 no.3
    • /
    • pp.331-345
    • /
    • 2007
  • Uncertainties enter a complex analysis from a variety of sources: variability, lack of data, human errors, model simplification and lack of understanding of the underlying physics. However, for many important engineering applications insufficient data are available to justify the choice of a particular probability density function (PDF). Sometimes the only data available are in the form of interval estimates which represent, often conflicting, expert opinion. In this paper we demonstrate that Bayesian estimation techniques can successfully be used in applications where only vague interval measurements are available. The proposed approach is intended to fit within a probabilistic framework, which is established and widely accepted. To circumvent the problem of selecting a specific PDF when only little or vague data are available, a hierarchical model of a continuous family of PDF's is used. The classical Bayesian estimation methods are expanded to make use of imprecise interval data. Each of the expert opinions (interval data) are interpreted as random interval samples of a parent PDF. Consequently, a partial conflict between experts is automatically accounted for through the likelihood function.

Crack source location by acoustic emission monitoring method in RC strips during in-situ load test

  • Shokri, Tala;Nanni, Antonio
    • Smart Structures and Systems
    • /
    • v.13 no.1
    • /
    • pp.155-171
    • /
    • 2014
  • Various monitoring techniques are now available for structural health monitoring and Acoustic Emission (AE) is one of them. One of the major advantages of the AE technique is its capability to locate active cracks in structural members. AE crack locating approaches are affected by the signal attenuation and dispersion of elastic waves due to inhomogeneity and geometry of reinforced concrete (RC) members. In this paper, a novel technique is described based on signal processing and sensor arrangement to process multisensory AE data generated by the onset and propagation of cracks and is validated with experimental results from an in-situ load test. Considering the sources of uncertainty in the AE crack location process, a methodology is proposed to capture and locate events generated by cracks. In particular, the relationship between AE events and load is analyzed, and the feasibility of using the AE technique to evaluate the cracking behavior of two RC slab strips during loading to failure is studied.

Validation of Digital Holographic Particle Velocity Measurement System (디지털 홀로그래피 입자 속도 계측시스템의 검증)

  • Roh, H.S.;Kang, B.S.
    • Journal of ILASS-Korea
    • /
    • v.18 no.3
    • /
    • pp.119-125
    • /
    • 2013
  • Digital holographic particle velocity measurement system can be a promising optical tool for the measurements of three dimensional particle velocities. In this research, validation experiments for the digital holographic particle velocity measurement system were conducted with measuring the velocities of glass beads on a rotating disk. Uncertainty analysis was performed to identify the sources of all relevant errors and to evaluate their magnitudes. The measurement results of particle velocities obtained with digital holographic method are compared reasonably well with the known values within acceptable range of errors. Moreover, digital holographic method showed better performance compared with that of optical holographic system.

Reliability analysis for fatigue damage of railway welded bogies using Bayesian update based inspection

  • Zuo, Fang-Jun;Li, Yan-Feng;Huang, Hong-Zhong
    • Smart Structures and Systems
    • /
    • v.22 no.2
    • /
    • pp.193-200
    • /
    • 2018
  • From the viewpoint of engineering applications, the prediction of the failure of bogies plays an important role in preventing the occurrence of fatigue. Fatigue is a complex phenomenon affected by many uncertainties (such as load, environment, geometrical and material properties, and so on). The key to predict fatigue damage accurately is how to quantify these uncertainties. A Bayesian model is used to account for the uncertainty of various sources when predicting fatigue damage of structural components. In spite of improvements in the design of fatigue-sensitive structures, periodic non-destructive inspections are required for components. With the help of modern nondestructive inspection techniques, the fatigue flaws can be detected for bogie structures, and fatigue reliability can be updated by using Bayesian theorem with inspection data. A practical fatigue analysis of welded bogies is utilized to testify the effectiveness of the proposed methods.

Wind-induced fragility assessment of protruding sign structures

  • Sim, Viriyavudh;Jung, WooYoung
    • Wind and Structures
    • /
    • v.31 no.5
    • /
    • pp.381-392
    • /
    • 2020
  • Despite that the failure of sign structure may not have disastrous consequence, its sheer number still ensures the need for rigorous safety standard to regulate their maintenance and construction. During its service life, a sign structure is subject to extensive wind load, sometimes well over its permissible design load. A fragility analysis of a sign structure offers a tool for rational decision making and safety evaluation by using a probabilistic framework to consider the various sources of uncertainty that affect its performance. Wind fragility analysis was used to determine the performance of sign structure based on the performance of its connection components. In this study, basic wind fragility concepts and data required to support the fragility analysis of the sign structure such as sign panel's parameters, connection component's parameters, as well as wind load parameters were presented. Fragility and compound fragility analysis showed disparity between connection component. Additionally, reinforcement of the connection system was introduced as an example of the utilization of wind fragility results in the retrofit decision making.