• Title/Summary/Keyword: uncertainty sources

Search Result 278, Processing Time 0.027 seconds

A Formal Guidance for Handling Different Uncertainty Sources Employed in the Level 2 PSA

  • Ahn Kwang-Il;Yang Joon-Eon;Ha Jae-Joo
    • Nuclear Engineering and Technology
    • /
    • v.36 no.1
    • /
    • pp.83-103
    • /
    • 2004
  • The methodological framework of the Level 2 PSA appears to be currently standardized in a formalized fashion, but there have been different opinions on the way the sources of uncertainty are characterized and treated. This is primarily because the Level 2 PSA deals with complex phenomenological processes that are deterministic in nature rather than random processes, and there are no probabilistic models characterizing them clearly. As a result, the probabilistic quantification of the Level 2 PSA CET / APET is often subjected to two sources of uncertainty: (a) incomplete modeling of accident pathways or different predictions for the behavior of phenomenological events and (b) expert-to-expert variation in estimating the occurrence probability of phenomenological events. While a clear definition of the two sources of uncertainty involved in the Level 2 PSA makes it possible to treat an uncertainty in a consistent manner, careless application of these different sources of uncertainty may produce different conclusions in the decision-making process. The primary purpose of this paper is to characterize typical sources of uncertainty that would often be addressed in the Level 2 PSA and to provide a formal guidance for quantifying their impacts on the PSA Level 2 risk results. An additional purpose of this paper is to give a formal approach on how to combine random uncertainties addressed in the Level 1 PSA with subjectivistic uncertainties addressed in the Level 2 PSA.

An Approach for the Uncertainty Evaluation of the Overall Result from Replications of Measurement: Separately Combining Individual Uncertainty Components According to their 'systematic' and 'random' Effects

  • Kim, In Jung;Kim, Byungjoo;Hwang, Euijin
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.4
    • /
    • pp.1057-1060
    • /
    • 2014
  • In our previous articles, an approach has been proposed for the evaluation of the uncertainty of overall result from multiple measurements. In the approach, uncertainty sources were classified into two groups: the first including those giving same 'systematic' effect on each individual measurement and the second including the others giving 'random' effect on each individual measurement and causing a variation among individual measurement results. The arithmetic mean of the replicated measurements is usually assigned as the value for the overall result. Uncertainty of the overall result is determined by separately evaluating and combining an overall uncertainty from sources of the 'systematic' effect and another overall uncertainty from sources of the 'random' effect. This conceptual approach has been widely adopted in chemical metrology society. In this study, further logical proof with more detailed mathematical expressions is provided on the approach.

Uncertainty in the Calibration of Coaxal Thermal Noise Sources using a Noise Figure Measuring Equipment

  • Kang, Tae-Weon;Kim, Jeong-Hwan;Park, Jeong-Il
    • Journal of electromagnetic engineering and science
    • /
    • v.4 no.2
    • /
    • pp.79-86
    • /
    • 2004
  • In this paper, the uncertainty in the calibration of coaxial thermal noise sources using a noise figure measuring (NFM) equipment is evaluated. Contributions to the uncertainty such as the calibration uncertainty of the standard noise source, mismatch, measurement of adapter efficiency, ambient temperature variation, and repeatability are evaluated in the frequency range of 10 MHz to 18 ㎓. Results show that the expanded uncertainty(k=2) is 0.23 ㏈ for the noise sources of 5 ㏈ and 15 ㏈ ENR, and 0.27 ㏈ for those of 21 ㏈.

Sensitivity Analysis of Uncertainty Sources in Flood Inundation Mapping by using the First Order Approximation Method (FOA를 이용한 홍수범람도 구축에서 불확실성 요소의 민감도 분석)

  • Jung, Younghun;Park, Jeryang;Yeo, Kyu Dong;Lee, Seung Oh
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.6
    • /
    • pp.2293-2302
    • /
    • 2013
  • Flood inundation map has been used as a fundamental information in flood risk management. However, there are various sources of uncertainty in flood inundation mapping, which can be another risk in preventing damage from flood. Therefore, it is necessary to remove or reduce uncertainty sources to improve the accuracy of flood inundation maps. However, the entire removal of uncertainty source may be impossible and inefficient due to limitations of knowledge and finance. Sensitivity analysis of uncertainty sources allows an efficient flood risk management by considering various conditions in flood inundation mapping because an uncertainty source under different conditions may propagate in different ways. The objectives of this study are (1) to perform sensitivity analysis of uncertainty sources by different conditions on flood inundation map using the FOA method and (2) to find a major contributor to a propagated uncertainty in the flood inundation map in Flatrock at Columbus, U.S.A. Result of this study illustrates that an uncertainty in a variable is differently propagated to flood inundation map by combination with other uncertainty sources. Moreover, elevation error was found to be the most sensitive to uncertainty in the flood inundation map of the study reach.

Measurement Uncertainty for Analysis of Residual Carbon in a Tungsten-15% Copper MIM part (텅스텐-15% 카파 사출성형체의 잔류 탄소량 분석에 대한 측정 불확도)

  • Lee, Jeong-Keun
    • Journal of Powder Materials
    • /
    • v.14 no.6
    • /
    • pp.410-414
    • /
    • 2007
  • Carbon contamination from the binder resin is an inherent problem with the metal powder injection molding process. Residual carbon in the W-Cu compacts has a strong impact on the thermal and electric properties. In this study, uncertainty was quantified to evaluate determination of carbon in a W-15%Cu MIM body by the combustition method. For a valid generalization about this evaluation, uncertainty scheme applied even to the repeatability as well as the uncertainty sources of each analyse step and quality appraisal sources. As a result, the concentration of carbon in the W-Cu part were measured as 0.062% with expanded uncertainty of 0.003% at 95% level. This evaluation example may be useful to uncertainty evaluation for other MIM products.

Uncertainty Evaluation of Nicotine in Cigarette Mainstream Smoke Using Two Point Re-calibration Method (두 점 교정법을 이용한 담배 연기 성분 중 니코틴 분석 결과에 대한 불확도 평가)

  • Kim Mi-Ju;Ji Sang-Un;Hwang Keon-Joong;Lee Moon-Soo;Cho Sung-Eel
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.26 no.2 s.52
    • /
    • pp.168-178
    • /
    • 2004
  • Uncertainty of final measurement results considering main uncertainty sources being in nicotine of mainstream smoke was estimated. This study was accomplished by using the ISO 'The Guide to the Expression of Uncertainty in Measurement'. Using the two point re-calibration method, uncertainty for nicotine concentration was calculated considering the uncertainty sources of each step. The concentration and uncertainty of nicotine in mainstream smoke was estimated as $153.95{\pm}17.84\;{\mu}g/mL\;(0.77\pm0.089 mg/cig)$. The expanded uncertainty was $17.84 {\mu}g/mL(\pm0.089 mg/cig).$ The reported expanded uncertainty of the measurement is stated as the standard uncertainty of measurement multiplied by a coverage factor of 2, which for a normal distribution corresponds to a coverage probability of approximately $95\%$ The former expression indicates the conversion concentration into the sample.

Risk assessment of steel and steel-concrete composite 3D buildings considering sources of uncertainty

  • Lagaros, Nikos D.
    • Earthquakes and Structures
    • /
    • v.6 no.1
    • /
    • pp.19-43
    • /
    • 2014
  • A risk assessment framework for evaluating building structures is implemented in this study. This framework allows considering sources of uncertainty both on structural capacity and seismic demand. In particular randomness on seismic load, incident angle, material properties, floor mass and structural damping are considered; in addition the choice of fibre modelling versus plastic hinge model is also considered as a source of uncertainty. The main objective of this work is to study the contribution of these sources of uncertainty on the fragilities of steel and steel-reinforced concrete composite 3D building structures. The fragility curves are expressed in the form of a two-parameter lognormal distribution where vertical statistics in conjunction with metaheuristic optimization are implemented for calculating the two parameters.

Uncertainty in Determination of Menthol from Mentholated Cigarette (담배 중 멘톨 분석에 대한 불확도 측정)

  • 장기철;이운철;백순옥;한상빈
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.22 no.1
    • /
    • pp.91-98
    • /
    • 2000
  • This study was carried out to evaluate the uncertainty in the analysis of menthol content from the mentholated cigarette. Menthol in the sample cigarette was extracted with methanol containing an anethole as an internal standard, and then analyzed by gas chromatography. As the sources of uncertainty associated with the analysis of menthol, were the following points tested, such as the weighing of sample, the preparation of extracting solution, the pipetting of extracting solution into the sample, the preparation of standard solution, the precision of GC injections for standard & sample solution, the GC response factor of standard solution, the reproducibility of menthol analysis, and the determination of water content in tobacco, etc. For calculating the uncertainties, type A of uncertainty was evaluated by the statistical analysis of a series of observation, and type B by the information based on supplier's catalogue and/or certificated of calibration. Sources of uncertainty were subsequently included and mathematically combined with the uncertainty arising from the assessment of accuracy to provide the overall uncertainty. It was shown that the main source of uncertainty came from the errors in the reproducibility of menthol and water determination, the purity of menthol reference material in the preparation of standard solution, and the precision of GC injections for sample solution. The errors in sample weighing and volume measurement contributed relatively little to the overall uncertainty. The expanded uncertainty in the mentholated cigarettes, Korean and American brand, at 0.95 level of statistical confidence was $\pm$0.06 and $\pm$0.07 mg/g for a menthol content of 1.89 and 2.32 mg/g, respectively.

  • PDF

Measurement Uncertainty for Analysis of Volatile Organic Compound in Cigarette Mainstream Smoke (담배 연기 중 휘발성 유기물질 분석에 대한 측정 불확도 산출)

  • Ka, Mi-Hyun;Cho, Sung-Eel;Kim, Mi-Ju;Lee, Chul-Hee;Ji, Sang-Un;Jeong, Jong-Soo;Kim, Yong-Ha;Min, Young-Keun
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.28 no.2
    • /
    • pp.144-151
    • /
    • 2006
  • A measurement uncertainty for analysis of volatile organic compound (benzene) in cigarette mainstream smoke was carried out. In this study one point re-calibration method was used to estimate uncertainty for benzene. The measurement uncertainty was calculated based on the uncertainty sources of each analysis step, quality appraisal sources, drift and repeatability. As a result, the concentration and expanded uncertainty of benzene in cigarette mainstream smoke were measured as $38.08{\pm}4.36{\mu}g/cig$. Relative uncertainty of drift and repeatability obtained were 5% and 3%, respectively.

Study of an Estimation Method of Thrust Measurement Uncertainty for the Solid Rocket Motors (고체 추진기관의 추력측정불확도 추정 방법 연구)

  • Lee, Kyu Joon;Kwon, Younghwa;Lee, Young Won
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.3
    • /
    • pp.18-30
    • /
    • 2020
  • This study deals an estimation method of thrust measurement uncertainty in solid rocket motors. Guidelines of the force measurement uncertainty estimation have been provided by ISO, domestic and international organizations. However, all of them are described by focusing on the force calibration machines and force transducers with a conceptually-driven way. Thus the guidelines cannot be directly applicable to uncertainty estimation of calibration equation and its linear approximation, which are critical error sources in the thrust measurement. In this paper, the equations taking into account effects of both error sources are derived based on fundamental concepts of measurement uncertainty. These are applied to the real thrust measurement system where a relatively simple estimation method for the thrust measurement uncertainty is proposed.