• Title/Summary/Keyword: uncertainty navigation

Search Result 131, Processing Time 0.03 seconds

Terrain-referenced Underwater Navigation using Rao-Blackwellized Particle Filter (라오-블랙웰라이즈드 입자필터를 이용한 지형참조 수중항법)

  • Kim, Taeyun;Kim, Jinwhan;Choi, Hyun-Taek
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.8
    • /
    • pp.682-687
    • /
    • 2013
  • Navigation is a crucial capability for all types of manned or unmanned vehicles. However, vehicle navigation in underwater environments still remains a challenging problem since GPS signals for position fixes are not available in the water. Terrain-referenced underwater navigation is an alternative navigation technique that utilizes geometric information of the subsea terrain to correct drift errors due to dead-reckoning or inertial navigation. Terrain-referenced navigation requires the description of an undulating terrain surface as a mathematical function or table, which often leads to a highly nonlinear estimation problem. Recently, PFs (Particle Filters), which do not require any restrictive assumptions about the system dynamics and uncertainty distributions, have been widely used for nonlinear filtering applications. However, PF has considerable computational requirements which used to limit its applicability to problems of relatively low state dimensions. This study proposes the use of a Rao-Blackwellized particle filter that is computationally more efficient than the standard PF for terrain-referenced underwater navigation involving a moderate number of states, and its performance is compared with that of the extended Kalman filter algorithm. The validity and feasibility of the proposed algorithm is demonstrated through numerical simulations.

Models for the Empty Container Repositioning and Leasing (공컨테이너 운영 관리를 위한 모형 개발)

  • 하원익;남기찬
    • Journal of the Korean Institute of Navigation
    • /
    • v.23 no.2
    • /
    • pp.11-22
    • /
    • 1999
  • This paper is concerned with the development of a tractable model to assist liner shipping companies in the decision-making of empty container repositioning and leasing. A hybrid methodology is presented which properly accounts for the specific characteristics of empty container management. For this mathematical models are developed based on dynamic network models, covering both land and marine segment. Then a stochastic method is presented to deal with the uncertainty of the future demand and supply. Especially, the concept of opportunity cost has been introduced in order to explain interactions between the variation of the future demand and supply and the stock level at each depot.

  • PDF

Improving the Performance of DR/GPS Integrated System For Land Navigation Using Sigma Point Based RHKF Filter (시그마 포인트 기반 RHKF 필터를 사용한 지상합법용 DR/GPS 결합시스템의 성능 향상)

  • Choi, Wan-Sik;Cho, Seong-Yun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.2
    • /
    • pp.174-185
    • /
    • 2006
  • This paper describes a DR construction for land navigation and the sigma point based receding horizon Kalman FIR (SPRHKF) filter for DR/GPS hybrid navigation system. A simple DR construction is adopted to improve the performance both of the pure DR navigation and the DR/GSP hybrid navigation system. In order to overcome the flaws of the EKF, the SPKF is merged with the receding horizon strategy. This filter has several advantages over the EKF, the SPKF, and the RHKF filter. The advantages include the robustness to the system model uncertainty, the initial estimation error, temporary unknown bias, and etc. The computational burden is reduced. Especially, the proposed filter works well even in the case of exiting the unmodeled random walk of the inertial sensors, which can be occurred in the MEMS inertial sensors by temperature variation. Therefore, the SPRHKF filter can provide the navigation information with good quality in the DR/GPS hybrid navigation system for land navigation seamlessly.

Iterative Container Reselection Methods for Remarshaling in a Container Terminal (컨테이너 터미널의 재정돈 대상 컨테이너 주기적 재선택 방안)

  • Park, Ki-Yeok;Park, Tae-Jin;Ryu, Kwang-Ryel
    • Journal of Navigation and Port Research
    • /
    • v.34 no.6
    • /
    • pp.503-509
    • /
    • 2010
  • Remarshaling is referred to a preparatory task of rearranging containers piled up in a stacking yard to improve the efficiency of loading. Selective remarshaling is required because the time for remarshaling known as large time-consuming task is not enough to remarshal all containers. In this research, we compare two previous researches in more objectively way: heuristic and genetic algorithm based approaches. In addition, we prove the effect of iterative reselection method on dwindling the gap between plan and execution due to the uncertainty of crane operation during execution. Simulation experiments under realistic uncertainty model show that heuristic approaches which have few computational complexity can cope with the uncertainty well when reselection interval is short, but genetic algorithm based approach has advantages when reselection interval that can ensure appropriate number of evolutions is given because of computational complexity for search.

Real Option Analysis on Ship Investment Valuation

  • Kim, Chi-Yeol;Ryoo, Dong-Keun;Kim, Jae-Kwan
    • Journal of Navigation and Port Research
    • /
    • v.33 no.7
    • /
    • pp.469-476
    • /
    • 2009
  • Recent collapse of shipping market right after unprecedent surge clearly demonstrates that shipping industry is extremely risky. Due to the volatile movements of the freight rates, investors tend to ask higher rate of return; higher required return reduces the total net present value of the investment project. For several decades, the Discounted Cash Flow(DCF hereafter) analysis has been the most frequently used valuation technique. However, the main problem of the DCF analysis is its assumption that the discount rate would stay the same during the project life. In other words, it usually does not address the decisions that managers have after a project has been accepted. The purpose of this study is investigate a new valuation method of investment: the Real Option Analysis(ROA hereafter) on ship investment. By replacing the existing valuation methods with the new one, the research will present a new perspective on investment with uncertainty. While uncertainty increases risk of investment and consequently discounts the value of it in the traditional feasibility analysis, in the ROA, a new valuation method which will be addressed in the research, uncertainty means some additional value of flexibility so that the tool can help investors produce more accurate decisions. Contrary to the DCF analysis, the ROA takes managerial flexibilities into account. In reality, capital budgeting and project management is typically dynamic, rather than static in nature. The ROA finds and assesses the values of managerial flexibilities or real options in the investments. The main structures of the research will be as follows: (1) overview of the ship investment project, (2) evaluation of the project by the Net Present Value analysis, (3) evaluation of the same project by the Real Option Analysis, (4) comparision of the two techniques.

Uncertainty Analysis of Improved Speed Performance of a Ship with an Air-Lubrication System in a Sea Trial (공기윤활시스템 적용 선박의 시운전 속도성능에 대한 불확실성 해석)

  • Seo, Dae-Won;Oh, Jungkeun
    • Journal of Navigation and Port Research
    • /
    • v.44 no.6
    • /
    • pp.453-459
    • /
    • 2020
  • A sea trial of the speed performance test is the one of the most important means of verifying a ship's performance, and the International Organization for Standardization established a standard for this test in 2015. Environmental disturbances such as wind and waves are always present under real sea conditions, however, so it is impossible to accurately estimate delivered horsepower under ideal conditions. These disruptive influences also make it difficult to evaluate the positive effect of recently developed energy-saving devices. In this study, uncertainty analysis of improved speed performance was carried out using Monte Carlo simulation to confirm the energy-saving efficiency of a ship equipped with an air-lubrication system. The findings showed the average power saving to be 3.2%, with the expanded uncertainty of ± 2.7% at a 95% confidence level (k=2).

Stability Condition for Discrete Interval System with Unstructured Uncertainty and Time-Varying Delay Time (비구조화된 불확실성과 시변 지연 시간을 갖는 이산 구간 시스템의 안정조건)

  • Hyung-seok Han
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.6
    • /
    • pp.551-556
    • /
    • 2021
  • In this paper, we deal with the stability condition of linear interval discrete systems with time-varying delays and unstructured uncertainty. For the interval discrete system which has interval matrix as its system matrices, time-varying delay time within some interval value and unstructured uncertainty which can include non-linearity and be expressed by only its magnitude, the stability condition is proposed. Compared with the previous result derived by using a upper bound solution of the Lyapunov equation, the new results are derived by the form of simple inequality based on Lyapunov stability condition and have the advantage of being more effective in stability application. Furthermore, the proposed stable conditions are very comprehensive and powerful, including the previously published stable conditions of various linear discrete systems. The superiority of the new condition is proven in the derivation process, and the utility and superiority of the proposed condition are examined through numerical example.

Stability Bounds of Unstructured and Time-Varying Delayed State Uncertainties for Discrete Interval Time-Varying System (이산 시변 구간 시스템의 비구조화된 불확실성과 시변 지연시간 상태변수 불확실성의 안정범위)

  • Hyung-seok Han
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.6
    • /
    • pp.871-876
    • /
    • 2023
  • In this paper, we deal with the stable conditions when two uncertainties exist simultaneously in a linear discrete time-varying interval system with time-varying delay time. The interval system is a system in which system matrices are given in the form of an interval matrix, and this paper targets the system in which the delay time of these interval system matrices and state variables is time-varying. We propose the system stability condition when there is simultaneous unstructured uncertainty that includes nonlinearity and only its magnitude and uncertainty in the system matrix of delayed state variables. The stable bounds for two types of uncertainty are derived as an analytical equation. The proposed stability condition and bounds can include previous stability condition for various linear discrete systems, and the values such as time-varying delay time variation size, uncertainty size, and range of interval matrix are all included in the conditional equation. The new bounds of stability are compared with previous results through numerical example, and its effectiveness and excellence are verified.

The division of action situation of collision avoidance in intelligent collision avoidance system

  • Zheng, Zhongyi;Wu, Zhaolin
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2001.10a
    • /
    • pp.114-119
    • /
    • 2001
  • Based on tole investigation on mariner’s behaviors in collision avoidance, actuality of collision avoidance at sea and the research on the uncertainty of collision avoidance behaviors adopted by two encounter vessels, and for the purpose to reduce the no-coordination action of collision avoidance between two encounter vessels, and on the base of different encounter situation in international convention for preventing collisions at sea, the concept of action situation between tee encounter vessels is proposed, and the directions for every encounter vessel to adopt course alteration to avoid collision are explained in different action situation. The mechanism of avoidance and reduction of no-coordination is established in intelligent collision avoidance system, and it is important id research on intelligent collision avoidance system.

  • PDF

Network Based Robot Simulator Implementing Uncertainties in Robot Motion and Sensing (로봇의 이동 및 센싱 불확실성이 고려된 네트워크 기반 로봇 시뮬레이션 프로그램)

  • Seo, Dong-Jin;Ko, Nak-Yong;Jung, Se-Woong;Lee, Jong-Bae
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.1
    • /
    • pp.23-31
    • /
    • 2010
  • This paper suggests a multiple robot simulator which considers the uncertainties in robot motion and sensing. A mobile robot moves with errors due to some kinds of uncertainties from actuators, wheels, electrical components, environments. In addition, sensors attached to a mobile robot can't make accurate output information because of uncertainties of the sensor itself and environment. Uncertainties in robot motion and sensing leads researchers find difficulty in building mobile robot navigation algorithms. Generally, a robot algorithm without considering unexpected uncertainties fails to control its action in a real working environment and it leads to some troubles and damages. Thus, the authors propose a simulator model which includes robot motion and sensing uncertainties to help making robust algorithms. Sensor uncertainties are applied in range sensors which are widely used in mobile robot localization, obstacle detection, and map building. The paper shows performances of the proposed simulator by comparing it with a simulator without any uncertainty.