• Title/Summary/Keyword: uncertainty evaluation method

Search Result 390, Processing Time 0.024 seconds

An Economic Evaluation by a Scoring Model in the Nuclear Power Plants under Uncertainty (원전에서 점수산정모형에 의한 경제성 평가)

  • 강영식;함효준
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.22 no.52
    • /
    • pp.311-322
    • /
    • 1999
  • Major problems involved in an electrical utility expansion planning within a time horizon are how to efficiently deal with objectives considering multiple factors and uncertainty. But justification factors in study these days have considered only quantitative factors except qualitative factors. Therefore, the purpose of this paper is to develop a new model for economic evaluation of nuclear power plants through the scoring model with the quantitative and qualitative factors under uncertainty. The quantitative factors use a levelized generation cost method considering time value of money. Especially, the environmental, risk, and safety factors in this paper have been also explained for the rational economic justification of the qualitative factors under uncertainty. This paper not only proposes a new approach method using the scoring model in evaluating economy of the nuclear power plant in the long term, but also provides the more efficient decision making criterion for nuclear power plants under uncertainty.

  • PDF

Noise Evaluation Considering the Uncertainty Variation According to Frequency

  • Lee, Chulwon;Koo, SeungJun;Kong, Young Mo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.04a
    • /
    • pp.191-196
    • /
    • 2014
  • In the evaluation of measured noise data, tolerance shall be decided based on the uncertainty. The uncertainty has frequency variations due to the different standard deviations at each frequency. Therefore, tolerance shall be differently decided for each frequency with the same confidence probability. In the report, the evaluation method considering the frequency variation of uncertainty will be introduced. From the approach, considering the actual noise distribution characteristics of the ships, the tolerance shall be decided for each frequency with the same probability, but the overall averaged value shall be kept to the value designated in each notation.

  • PDF

Probabilistic seismic assessment of structures considering soil uncertainties

  • Hamidpour, Sara;Soltani, Masoud;Shabdin, Mojtaba
    • Earthquakes and Structures
    • /
    • v.12 no.2
    • /
    • pp.165-175
    • /
    • 2017
  • This paper studies soil properties uncertainty and its implementation in the seismic response evaluation of structures. For this, response sensitivity of two 4- and 12-story RC shear walls to the soil properties uncertainty by considering soil structure interaction (SSI) effects is investigated. Beam on Nonlinear Winkler Foundation (BNWF) model is used for shallow foundation modeling and the uncertainty of soil properties is expanded to the foundation stiffness and strength parameters variability. Monte Carlo (MC) simulation technique is employed for probabilistic evaluations. By investigating the probabilistic evaluation results it's observed that as the soil and foundation become stiffer, the soil uncertainty is found to be less important in influencing the response variability. On the other hand, the soil uncertainty becomes more important as the foundation-structure system is expected to experience nonlinear behavior to more sever degree. Since full This paper studies soil properties uncertainty and its implementation in the seismic response evaluation of structures. For this, response sensitivity of two 4- and 12-story RC shear walls to the soil properties uncertainty by considering soil structure interaction (SSI) effects is investigated. Beam on Nonlinear Winkler Foundation (BNWF) model is used for shallow foundation modeling and the uncertainty of soil properties is expanded to the foundation stiffness and strength parameters variability. Monte Carlo (MC) simulation technique is employed for probabilistic evaluations. By investigating the probabilistic evaluation results it's observed that as the soil and foundation become stiffer, the soil uncertainty is found to be less important in influencing the response variability. On the other hand, the soil uncertainty becomes more important as the foundation-structure system is expected to experience nonlinear behavior to more sever degree. Since full probabilistic analysis methods like MC commonly are very time consuming, the feasibility of simple approximate methods' application including First Order Second Moment (FOSM) method and ASCE41 proposed approach for the soil uncertainty considerations is investigated. By comparing the results of the approximate methods with the results obtained from MC, it's observed that the results of both FOSM and ASCE41 methods are in good agreement with the results of MC simulation technique and they show acceptable accuracy in predicting the response variability.

Uncertainty Evaluation of Nicotine in Cigarette Mainstream Smoke Using Two Point Re-calibration Method (두 점 교정법을 이용한 담배 연기 성분 중 니코틴 분석 결과에 대한 불확도 평가)

  • Kim Mi-Ju;Ji Sang-Un;Hwang Keon-Joong;Lee Moon-Soo;Cho Sung-Eel
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.26 no.2 s.52
    • /
    • pp.168-178
    • /
    • 2004
  • Uncertainty of final measurement results considering main uncertainty sources being in nicotine of mainstream smoke was estimated. This study was accomplished by using the ISO 'The Guide to the Expression of Uncertainty in Measurement'. Using the two point re-calibration method, uncertainty for nicotine concentration was calculated considering the uncertainty sources of each step. The concentration and uncertainty of nicotine in mainstream smoke was estimated as $153.95{\pm}17.84\;{\mu}g/mL\;(0.77\pm0.089 mg/cig)$. The expanded uncertainty was $17.84 {\mu}g/mL(\pm0.089 mg/cig).$ The reported expanded uncertainty of the measurement is stated as the standard uncertainty of measurement multiplied by a coverage factor of 2, which for a normal distribution corresponds to a coverage probability of approximately $95\%$ The former expression indicates the conversion concentration into the sample.

Development of an Performance Evaluation Method for Vehicle Detector Speed Measurement Applying Uncertainty in Measurement (측정불확도를 적용한 차량검지기 속도측정 성능평가방법 개발)

  • Lee, Hwan-Pil;Kim, Yong-Man;Kang, Dong-Yun
    • International Journal of Highway Engineering
    • /
    • v.14 no.2
    • /
    • pp.165-174
    • /
    • 2012
  • In this study, a method for evaluating the performance of speed measurements was developed to assess the qualities of a vehicle detector. The evaluation method considers measurement errors that are reflected in a reference speed. For this, the concept of uncertainty in measurement was applied to the development method. Other factors such as precedent study, statistical processing techniques, and speed measurement performance method of traffic enforcement equipment and vehicle detection systems were also reviewed. Through this process, the problems of the existing evaluation methods were derived and developed for the new performance evaluation method. Vehicle detectors that are installed in the field were evaluated using the traditional assessment methods and the developed method. As a result, for traditional assessment methods, it was found that evaluation criteria are acceptable, while developed method's criteria are not acceptable. This means that traditional assessment methods do not sufficiently consider errors in measurement, so it has potential to over-estimate for performance of evaluation equipment. On the other hand, it was represented that the developed method should include variable factor such as errors in measurement and more precise compared to traditional assessment methods.

Uncertainty Evaluation of Josephson Voltage Standard in the level of $10^{-10}$ (10의 -10승 수준에서 조셉슨 전압표준기 불확도 평가)

  • Kim, K.T.;Kim, M.S.;Chong, Y.;Kim, W.S.;Song, W.
    • Progress in Superconductivity
    • /
    • v.9 no.1
    • /
    • pp.56-61
    • /
    • 2007
  • The most recent improvement in the 10 V array system was carried out with focusing on noise reduction. We have evaluated the uncertainty of the 10 V Josephson array system after the improvement. The uncertainty evaluation of 10 V standard included a comparison with a programmable Josephson array system at 1 V. Every contribution to the measurement uncertainty was evaluated in the level of $10^{-10}$. The estimated combined uncertainty was found to be approximately $10^{-9}$ at 10 V, which was limited only by the indirect verifying method. In the near future, a direct comparison with another 10 V Josephson voltage standard is expected to be carried out to provide more accurate uncertainty evaluation for the KRISS Josephson voltage standard.

  • PDF

Comparison of measurement uncertainty calculation methods on example of indirect tensile strength measurement

  • Tutmez, Bulent
    • Geomechanics and Engineering
    • /
    • v.12 no.6
    • /
    • pp.871-882
    • /
    • 2017
  • Indirect measure of the tensile strength of laboratory samples is an important topic in rock engineering. One of the most important tests, the Brazilian strength test is performed to obtain the tensile strength of rock, concrete and other quasi brittle materials. Because the measurements are provided indirectly and the inspected rock materials may have heterogeneous properties, uncertainty quantification is required for a reliable test evaluation. In addition to the conventional measurement evaluation uncertainty methods recommended by the Guide to the Expression of Uncertainty in Measurement (GUM), such as Taylor's and Monte Carlo Methods, a fuzzy set-based approach is also proposed and resulting uncertainties are discussed. The results showed that when a tensile strength measurement is measured by a laboratory test, its uncertainty can also be expressed by one of the methods presented.

A Study on Robust Identification Based on the Validation Evaluation of Model (모델의 타당성 평가에 기초한 로바스트 동정에 관한 연구)

  • Lee, Dong-Cheol;Chung, Hyung-Hwan;Bae, Jong-Il
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2690-2692
    • /
    • 2000
  • In order to design a stable robust controller, nominal model, and the upper bound about the uncertainty which is the error of the model are needed. The problem to estimate the nominal model of controlled system and the upper bound of uncertainty at the same time is called robust identifcation. When the nominal model of controlled system and the upper bound of uncertainty in relation to robust identifcation are given, the evaluation of the validity of the model and the upper bound makes it possible to distinguish whether there is a model which explains observation data including disturbance among the model set. This paper suggests a method to identify the uncertainty which removes disturbance and expounds observation data by giving a probable postulation and plural data set to disturbance. It also examines the suggested method through a numerical computation simulation and validates its effectiveness.

  • PDF

Automated data interpretation for practical bridge identification

  • Zhang, J.;Moon, F.L.;Sato, T.
    • Structural Engineering and Mechanics
    • /
    • v.46 no.3
    • /
    • pp.433-445
    • /
    • 2013
  • Vibration-based structural identification has become an important tool for structural health monitoring and safety evaluation. However, various kinds of uncertainties (e.g., observation noise) involved in the field test data obstruct automation system identification for accurate and fast structural safety evaluation. A practical way including a data preprocessing procedure and a vector backward auto-regressive (VBAR) method has been investigated for practical bridge identification. The data preprocessing procedure serves to improve the data quality, which consists of multi-level uncertainty mitigation techniques. The VBAR method provides a determinative way to automatically distinguish structural modes from extraneous modes arising from uncertainty. Ambient test data of a cantilever beam is investigated to demonstrate how the proposed method automatically interprets vibration data for structural modal estimation. Especially, structural identification of a truss bridge using field test data is also performed to study the effectiveness of the proposed method for real bridge identification.

Evaluation of uncertainty in measurement of floor impact sound insulation of buildings using standard heavy impact source (표준중량충격원을 이용한 건축물의 바닥 충격음 차단성능 측정불확도 평가)

  • Yong-Bong Lee;Hyok-Je Kwon;Chang-Whan Kim;Man-Hee Cho;Hang Kim;SungSoo Jung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.2
    • /
    • pp.143-151
    • /
    • 2023
  • In this paper, a method for evaluating the measurement uncertainty is proposed when measuring of floor impact sound insulation of buildings using standard heavy impact source. In addition to the effect of repeated measurements, several other factors such as measurement location, impact location, equipment used for sound pressure measurement, and heavy impact source, were considered. A mathematical model for the average maximum impact sound level and the uncertainty evaluation method for each factor were proposed. The present proposed method was applied to measurement results to evaluate the average maximum impact sound pressure level and the measurement uncertainty.