• Title/Summary/Keyword: uncertainties of measurement data

Search Result 104, Processing Time 0.019 seconds

Standardization of KoFlux Eddy-Covariance Data Processing (KoFlux 에디 공분산 자료 처리의 표준화)

  • Hong, Jin-Kyu;Kwon, Hyo-Jung;Lim, Jong-Hwan;Byun, Young-Hwa;Lee, Jo-Han;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.11 no.1
    • /
    • pp.19-26
    • /
    • 2009
  • The standardization of eddy-covariance data processing is essential for the analysis and synthesis of vast amount of data being accumulated through continuous observations in various flux measurement networks. End users eventually benefit from the open and transparent standardization protocol by clear understanding of final products such as evapotranspiration and gross primary productivity. In this paper, we briefly introduced KoFlux efforts to standardize data processing methodologies and then estimated uncertainties of surface fluxes due to different processing methods. Based on our scrutiny of the data observed at Gwangneung KoFlux site, net ecosystem exchange and ecosystem respiration were sensitive to the selection of different processing methods. Gross primary production, however, was consistent within errors due to cancellation of the differences in NEE and Re, emphasizing that independent observation of ecosystem respiration is required for accurate estimates of carbon exchange. Nocturnal soil evaporation was small and thus the annually integrated evapotranspiration was not sensitive to the selection of different data processing methods. The implementation of such standardized data processing protocol to AsiaFlux will enable the establishment of consistent database for validation of models of carbon cycle, dynamic vegetation, and land-atmosphere interaction at regional scale.

Flood Inflow Estimation at Large Multipurpose Dam using Distributed Model with Measured Flow Boundary Condition at Direct Upstream Channels (직상류 계측유량경계조건과 분포형모델을 이용한 대규모 다목적댐 홍수유입량 산정)

  • Hong, Sug-Hyeon;Kang, Boosik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.5
    • /
    • pp.1039-1049
    • /
    • 2015
  • The inflow estimation at large multipurpose dam reservoir is carried out by considering the water balance among the discharge, the storage change during unit time interval obtained from the observed water level near dam structure and area-volume curve. This method can be ideal for level pool reservoir but include potential errors when the inflow is influenced by the water level slope due to backwater effects from upstream flood inflows and strong wind induced by typhoon. In addition, the other uncertainties arisen from the storage reduction due to sedimentation after the dam construction and water level noise due to mechanical vibration transmitted from the electric power generator. These uncertainties impedes the accurate hydraulic inflow measurement requiring exquisite hydrometric data arrangement for reservoir waterbody. In this study, the distributed hydrologic model using UBC-3P boundary setting was applied and its feasibility was evaluated. Finally, the modeling performance has been verified since the calculated determination coefficient has been in between 0.96 to 0.99 after comparing with observed peak inflow and total inflow at Namgang dam reservoir.

Introduction and Application of 3D Terrestrial Laser Scanning for Estimating Physical Structurers of Vegetation in the Channel (하도 내 식생의 물리적 구조를 산정하기 위한 3차원 지상 레이저 스캐닝의 도입 및 활용)

  • Jang, Eun-kyung;Ahn, Myeonghui;Ji, Un
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.2
    • /
    • pp.90-96
    • /
    • 2020
  • Recently, a method that applies laser scanning (LS) that acquires vegetation information such as the vegetation habitat area and the size of vegetation in a point cloud format has been proposed. When LS is used to investigate the physical shape of vegetation, it has the advantage of more accurate and rapid information acquisition. However, to examine uncertainties that may arise during measurement or post-processing, the process of adjusting the data by the actual data is necessary. Therefore, in this study, the physical structure of stems, branches, and leaves of woody vegetation in an artificially formed river channel was manually investigated. The obtained results then compared with the information acquired using the three-dimensional terrestrial laser scanning (3D TLS) method, which repeatedly scanned the target vegetation in various directions to obtain relevant information with improved precision. The analysis demonstrated a negligible difference between the measurements for the diameters of vegetation and the length of stems; however, in the case of branch length measurement, a relatively more significant difference was observed. It is because the implementation of point cloud information limits the precise differentiation between branches and leaves in the canopy area.

Reliable Assessment of Rainfall-Induced Slope Instability (강우로 인한 사면의 불안정성에 대한 신뢰성 있는 평가)

  • Kim, Yun-Ki;Choi, Jung-Chan;Lee, Seung-Rae;Seong, Joo-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.5
    • /
    • pp.53-64
    • /
    • 2009
  • Many slope failures are induced by rainfall infiltration. A lot of recent researches are therefore focused on rainfall-induced slope instability and the rainfall infiltration is recognized as the important triggering factor. The rainfall infiltrates into the soil slope and makes the matric suction lost in the slope and even the positive pore water pressure develops near the surface of the slope. They decrease the resisting shear strength. In Korea, a few public institutions suggested conservative slope design guidelines that assume a fully saturated soil condition. However, this assumption is irrelevant and sometimes soil properties are misused in the slope design method to fulfill the requirement. In this study, a more relevant slope stability evaluation method is suggested to take into account the real rainfall infiltration phenomenon. Unsaturated soil properties such as shear strength, soil-water characteristic curve and permeability for Korean weathered soils were obtained by laboratory tests and also estimated by artificial neural network models. For real-time assessment of slope instability, failure warning criteria of slope based on deterministic and probabilistic analyses were introduced to complement uncertainties of field measurement data. The slope stability evaluation technique can be combined with field measurement data of important factors, such as matric suction and water content, to develop an early warning system for probably unstable slopes due to the rainfall.

Effect of Observed Discharge Data on Regional Flood Frequency Analysis in the Han River Basin (한강유역 관측유출자료가 지역홍수빈도분석 결과에 미치는 영향)

  • Kim, Nam Won;Lee, Jeong Eun;Lee, Jeongwoo;Jung, Yong
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.6
    • /
    • pp.511-522
    • /
    • 2015
  • This study assessed the impact of uncertainties in flood data on the results of flood frequency analysis for Han river basin. To meet this aim, this study quantified assessment focused on the index flood and quantile by regional flood frequency analysis using the flood data from 17 water level gauges in Han river basin. We analysed the results categorized by three cases according to the characteristics of the measured data. Firstly, we analyzed the regional flood frequency for the water level gauge in the Pyungchang river basin to investigate the impact of water level data. The results has the error of 0.240 with respect to the mean flood. Secondly, we examined the impact of uncertainty in measurement data generated by the application of rating on the results of regional flood frequency analysis. We have compared the results by applying the rating estimated for each year to the one by the recently estimated rating. The results showed that the mean error has 0.246 in terms of the mean flood. Finally, we have inferred the regional flood frequency analysis results with the regulated flow in the downstream area of dams. The regulated specific discharge in the downstream area of dams controlled by dam operation showed a large difference to the estimated specific discharge in the downstream area of dams by extension of the natural specific discharge in the upstream area using the regionalization method.

Bayesian ballast damage detection utilizing a modified evolutionary algorithm

  • Hu, Qin;Lam, Heung Fai;Zhu, Hong Ping;Alabi, Stephen Adeyemi
    • Smart Structures and Systems
    • /
    • v.21 no.4
    • /
    • pp.435-448
    • /
    • 2018
  • This paper reports the development of a theoretically rigorous method for permanent way engineers to assess the condition of railway ballast under a concrete sleeper with the potential to be extended to a smart system for long-term health monitoring of railway ballast. Owing to the uncertainties induced by the problems of modeling error and measurement noise, the Bayesian approach was followed in the development. After the selection of the most plausible model class for describing the damage status of the rail-sleeper-ballast system, Bayesian model updating is adopted to calculate the posterior PDF of the ballast stiffness at various regions under the sleeper. An obvious drop in ballast stiffness at a region under the sleeper is an evidence of ballast damage. In model updating, the model that can minimize the discrepancy between the measured and model-predicted modal parameters can be considered as the most probable model for calculating the posterior PDF under the Bayesian framework. To address the problems of non-uniqueness and local minima in the model updating process, a two-stage hybrid optimization method was developed. The modified evolutionary algorithm was developed in the first stage to identify the important regions in the parameter space and resulting in a set of initial trials for deterministic optimization to locate all most probable models in the second stage. The proposed methodology was numerically and experimentally verified. Using the identified model, a series of comprehensive numerical case studies was carried out to investigate the effects of data quantity and quality on the results of ballast damage detection. Difficulties to be overcome before the proposed method can be extended to a long-term ballast monitoring system are discussed in the conclusion.

Field Test on the Rigidities of Substructures of High Speed Railway Bridges (고속철도교량 하부구조 강성도에 관한 현장실험)

  • Chin Won-Jong;Choi Eun-Suk;Kwark Jong-Won;Kang Jae-Yoon;Cho Jeong-Rae;Kim Byung-Suk
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.1 s.32
    • /
    • pp.118-124
    • /
    • 2006
  • SThe rigidities of bridge substructures are the important data in the rail-bridge interaction analysis in Korean High -Speed Railway. This experimental study is being performed because of followings. 1) More correct longitudinal stiffness of the structure including substructure should be considered in the calculation of stresses in rails. 2) There are many uncertainties in the design and construction of the piers and foundations. 3) Actual guideline for the rigidities of piers and foundations in the design is necessary. 4) Measurement on the rigidity of pier according to the types of piers, foundations and soil-conditions is needed. Curve for estimating the total rigidity of substructure will be obtained through this and further experimental studies. It may be used in the analysis of Korean High-Speed Railway bridge and then, longitudinal stresses in the rails can be estimated more accurately. One pair of piers, which consist of pot-bearing for fixed support and pad-bearing for movable support, are loaded by steel frame devices with steel wire ropes and hydraulic jack. The responses which are measured at each loading stages in those field tests are displacements and tilted angles on the top and bottom of piers. This study is being performed testing and analysis about several piers in the construction field.

Probability Based Resistance Model of Steel Girder Bridges Based on Field Testing (현장계측결과를 이용한 강거더교의 확률적 저항모델)

  • Eom, Jun-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.4
    • /
    • pp.195-202
    • /
    • 2008
  • Underestimation of the capacity can have serious economic consequences, as deficient bridges must be posted, repaired or replaced. Accurate prediction of bridge behavior may allow for more bridges to remain in service with or without minor repairs. The presented research is focused on the reliability evaluation of the actual load carrying capacity of existing bridges based on the field testing. Reliability analysis is performed on 17 previously tested bridges. Bridges are first evaluated based on the code specified values and design resistance. However, after the field testing program, it is possible to apply the experimental results into the bridge reliability evaluation procedures. The girder distribution factors obtained from the tests are also applied in the reliability calculation. The results indicate that the reliability indices of selected bridges can be significantly increased due to the reduction of uncertainties without sacrificing the safety of structures, by including the result of field measurement data into calculation.

Ensemble Daily Streamflow Forecast Using Two-step Daily Precipitation Interpolation (일강우 내삽을 이용한 일유량 시뮬레이션 및 앙상블 유량 발생)

  • Hwang, Yeon-Sang;Heo, Jun-Haeng;Jung, Young-Hun
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.3
    • /
    • pp.209-220
    • /
    • 2011
  • Input uncertainty is one of the major sources of uncertainty in hydrologic modeling. In this paper, first, three alternate rainfall inputs generated by different interpolation schemes were used to see the impact on a distributed watershed model. Later, the residuals of precipitation interpolations were tested as a source of ensemble streamflow generation in two river basins in the U.S. Using the Monte Carlo parameter search, the relationship between input and parameter uncertainty was also categorized to see sensitivity of the parameters to input differences. This analysis is useful not only to find the parameters that need more attention but also to transfer parameters calibrated for station measurement to the simulation using different inputs such as downscaled data from weather generator outputs. Input ensembles that preserves local statistical characteristics are used to generate streamflow ensembles hindcast, and showed that the ensemble sets are capturing the observed steamflow properly. This procedure is especially important to consider input uncertainties in the simulation of streamflow forecast.

Development of a New Radiotherapy Technique using the Quasi-Conformation Method (Quasi-Conformation 치료를 위한 새로운 방사선치료기술의 개발)

  • Choi, Tae-Jin;Kim, Jin-Hee;Kim, Ok-Bae
    • Radiation Oncology Journal
    • /
    • v.9 no.2
    • /
    • pp.343-350
    • /
    • 1991
  • The quasi-conformation therapy was performed to get a homogeneous dose distributions for irregeular shaped tumor lesion by using the arc moving beam and beam modifying filter which was made by cerrobend alloy($\rho$=9.4 g/cc) metal. In our dose calcuation programme, it was fundmentally based on Clarkson's method to calcuate the irregular multi-step block field in rotation therapy. In this study, the expected relative depth doses under multipartial attenuator agree well with measured data at same plane. The results of comparison the dose computation with that of TLD measurement are very closed within ${\pm}5\%$ uncertainties in the irradiation to phantom with quasi-comformation method. And it has shown that irregular typed multi-step filter can be applied to quasi-conformation therapy in high energy radiation plannings.

  • PDF