• Title/Summary/Keyword: unbonded type

Search Result 43, Processing Time 0.02 seconds

An Experimental Study on Interrelation of Influential Parameters on Unbonded Tendon Stress

  • Moon, Jeong-Ho;Lim, Jae-Hyung
    • International Journal of Concrete Structures and Materials
    • /
    • v.18 no.2E
    • /
    • pp.111-116
    • /
    • 2006
  • The purpose of this study is to investigate the relations between unbonded tendon stress and its influential parameters, i.e. bonded reinforcement ratio, span/depth ratio, and loading type. To this end, the influence of such parameters was examined with twenty eight test results of previous studies. Afterwards, an experimental study was carried out with twenty one test specimens. The investigation of previous and current experiments revealed the followings; (1) The bonded reinforcement ratio and prestressing ratio were proved to be important variables on the unbonded tendon stress. (2) The ratio of span to depth and the type of loading affected the unbonded tendon stress partially although their effects varied with bonded reinforcement ratio. (3) AASHTO LRFD Code and Moon/Lim's design equations predicted the experimental results well with the safety margin.

Optimal Design of Stem Shape for Artificial Hip Prosthesis with Unbonded Cement Mantle (시멘트 비접착 인공 고관절의 주대 형상 최적 설계)

  • Choi, Don-Ok;Yoon, Yong-San
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.932-938
    • /
    • 2001
  • This study is concerned with the shape optimization of stem for the artificial hip prosthesis with unbonded cement mantle. The artificial hip prosthesis with unbonded cement mantle allows a stem to slip on cement mantle because of polished stem surface. Unbonded cement mantle type has several advantages compared with bonded cement mantle type, for example, small micro motion, preventing stress shielding and so on. In this study, 2-dimensional axisymmetric model was developed with considering characteristics of unbonded cement mantle. Moreover, optimal shape of stem was obtained by using feasible direction method. The objective of this optimization is maximizing supported vertical loading. The slip motion and stresses of stem, cement mantle and bone is used for constraints. The optimal shape which obtained by this study has slope of 0.15 in proximal part and maintains the width about 5mm in distal part In addition, simplified 3-dimensional analysis which applying optimal shape is carried out. The result of 3-dimensional analysis showed that optimal shape has some advantages for cement mantle stress. However, more realistic 3-dimensional analysis which including bending effect, complex geometries etc. is needed in further research.

  • PDF

Analysis of Prestressed Concrete Continuous Members with Unbonded Tendons (부착되지 않은 텐돈을 갖는 PS 콘크리트 연속부재의 해석적 연구)

  • 문정호;이리형
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.6
    • /
    • pp.197-208
    • /
    • 1995
  • The prestressed concrete continuous members with unbonded tendons were investigated while comparing the experimental data with the analytical results. The comparison was carried out with the program TAPS which can take into account the unbonded tendon effects. The subjects that were interested included the load-deflection response, the design equations for the tendon stress at failure, the effects of bonded reinforcements, the effects of span-depth ratio, the effects of loading type. In this paper, contiriuous prestressed concrete members with unbonded ten dons were investigated. Of twelve tests with continuous members, six were two-span beams and six were three span one-way slats. Analytical results were compared favorably with experimental data and disclosed that the tendon stress at flexural failure is the function of the amount of bonded reinforcements, the loading types and patterns, and the tendon profile.

Overestimation of Ultimate Tendon Stress in a Prestressed Concrete Beam with Unbonded Tendons (비부착 긴장재를 갖는 프리스트레스트 콘크리트 보에서 긴장재 응력의 과대평가)

  • 이종윤;임재형;문정호;신경재
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.4
    • /
    • pp.73-81
    • /
    • 1999
  • The present study is to examine the ACI code equations for computing the unbonded tendon stress at flexural failure of prestressed beams. The equations examined for their validity are Eq. 18-4 and Eq. 18-5 of the ACI 318-95. Since the possibility of overestimation was expected with the equations, a numerical study, first, was carried out with influential variables included. From this study, it was found that amount of reinforcements, effective prestress, location of tendons, and loading type may affect the overestimation of the unbonded tendon stress. Then, an experimental study was carried out with those variables. A total of 8 specimens was tested to prove the theoretical findings as well as the effect of those variables. As a result. it was proven that the ACI Code equations can overestimate significantly the unbonded tendon stress for certain cases.

Out-of-plane behavior of perforated masonry walls strengthened with steel-bar truss system

  • Hwang, Seung-Hyeon;Mun, Ju-Hyun;Yang, Keun-Hyeok;Kim, Sanghee
    • Structural Engineering and Mechanics
    • /
    • v.83 no.6
    • /
    • pp.799-810
    • /
    • 2022
  • This study investigated the effect of the strengthening efficiency of unbonded steel-bar truss system on the out-of-plane behavior of perforated masonry walls. Four full-scale unreinforced masonry (URM) walls with two different planes were prepared using the unbonded steel-bar truss system and a URM walls without strengthening. All masonry walls were tested under constant axial and cyclic lateral loads. The obtained test results indicated that the pinching effect in the out-plane behavior of masonry walls tends to decrease in the in- and out-of-plane strengthened URM walls using the unbonded steel-bar truss system with the higher prestressing force ratio (Rp) of vertical reinforcing bars in the unbonded steel-bar truss system, regardless of the perforated type of the masonry wall. Consequently, the highest maximum shear resistance and cumulative dissipated energy at peak load in the post-peak behavior were observed in the in- and out-plane strengthened URM walls with the highest Rp values, which are 2.7 and 6.0 times higher than those of URM. In particular, the strengthening efficiency of the unbonded steel-bar truss system was primarily attributed to the vertical prestressed steel-bars rather than the diagonal steel-bars, which indicates that the strains in the vertical prestressed steel-bars at the peak load were approximately 1.6 times higher than those in the diagonal steel-bars.

Ground Anchor Testing on Temporary Excavations (일반 가설앵커의 문제점과 개선방향)

  • 김성규;김낙경;김정렬
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.545-552
    • /
    • 2003
  • For temporary excavation support in a congested urban area, the strand of ground anchor should be removed to get permission of the private land to install anchors. But the strand doesn't need to be removed in the outside city area after use. So the anchor body, tension anchor, is fabricated in-situ. The unbonded length of This anchor has several strands, which wrap only one sheath. When the anchor body is carried into job-site or installed in the bore hole, the sheath is torn easily because it is a very week material. So the grout permeate into the torn sheath. Because of that, the load doesn't transfer to the bond length of ground anchors. It may indicate that load is being transferred along the unbonded length and thus within the potential slip surface assumed for overall stability of the anchored system. The load tests were performed on seven low-pressure grouted anchors installed in weathered soil to verify its problems. Four anchors(Type A) have the unbonded length, which consist of five strands and a week sheath and three anchors(Type B) have strands, which is covered by plastic sheath filled with grease, in the unbonded length. Both anchors are compared with load tests results.

  • PDF

Parametric study for influential factors on unbonded tendon stress increase (비부착 긴장재의 응력 변화에 영향을 미치는 변수에 관한 고찰)

  • 이선화;문정호;임재형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.651-656
    • /
    • 2000
  • The strain compatibility analysis shows that the influential parameters of loading type, reinforcing ratio, and span-depth ratio affect on the tendon stress in unbonded prestresses concrete member significantly. However, existing test results did not comply exactly with the analytical results. In consequence, the present study was planned to examine the parameters in order to complete Moon/Lim's design equation. The test variables with 12 specimens were loading type, reinforcing ratio, and span-depth ratio. As results, the effect of influential parameters were examined throughly and Moon/Lim's design equation was proven to be accurate.

  • PDF

The Comparison of Bonded/Unbonded Stem-Cement Interface in Total Hip Replacement -Experimental Study (인공 고관절 전치환술에서 주대-시멘트 경계층의 접착 및 비접착 고정술의 비교를 위한 실험적 연구)

  • Han, J.H.;Yoon, Y.S.;Lee, J.J.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.951-955
    • /
    • 2001
  • The experimental comparison between bonded and unbonded types stem-cement interface was carried out on axisymmetric stem-cement-aluminum model of the femoral component of a total hip replacement. Human femur was modeled in non-tapered and tapered($7.5^{\circ}$) aluminum hollow cylinders to emulate the diaphyseal and metaphyseal segments of the femur. For unbonded type, we tested stems with three different taper angles($5^{\circ},\;7.5^{\circ},\;10^{\circ}$). In every case, the cement-aluminum interface was designed to endure 8MPa shear strength. (a measured value at cement-bone interface) We tested aluminum models under axial loading for both cases. As an experimental result, it was found that unbonded stem sustained more axial load as bonded stem in both cases, diaphyseal and metaphyseal models. The unbonded types failed in cement mantle under axial compressive load, while the bonded ones failed in shear at cement-aluminum interface. These results suggest that a polished stem will sustain much higher axial load than a roughened stem. And a polished stem will make more stable cement-bone interface that may promote better osteosythesis around the stem.

  • PDF

Effects of Stressed and Unstressed Reinforcements on Prestressed Concrete Members with Unbonded Tendons

  • Moon, Jeong-Ho;Shin, Kyung-Jae;Lim, Jae-Hyung;Lee, Sun-Hwa
    • KCI Concrete Journal
    • /
    • v.12 no.1
    • /
    • pp.131-138
    • /
    • 2000
  • The research purpose of this paper is to investigate the influential Parameters on the unbonded tendon stress. The parameters were the reinforcing ratio, the prestressing ratio, and the loading type. To this end. first, the influence of parameters were examined with twenty eight test results obtained from references. Then, an experimental study was carried out with nine specimens. Test variables were the reinforcing ratio and the prestressing ratio. Specimens were divided equally into three groups and each group had a different level of the reinforcing ratio. Each specimen within a group has a different level of the prestressing ratio. The investigation with previous and current tests revealed the followings; (1) the length of crack distribution zone does not have a close relation with the length of plastic hinge. (2) the prestressing ratio does not affect both the length of crack distribution and the length of plastic hinge, (3) the tendon stress variation is in reverse relation with the ratios of mild steels and tendons, (4) the loading type nay not affect significantly the length of crack distribution zone, (5) AASHTO LRFD Code equation and Moon/Lim's design equation predicted the test results well with some safety margins.

  • PDF

Post-tensioning System with Externally Unbonded CFRP Strips for Strengthening RC Members (RC 부재의 휨 보강을 위한 외부 비부착형 탄소섬유판 포스트텐션 시스템)

  • You, Young-Chan;Choi, Ki-Sun;Kim, Keung-Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.6
    • /
    • pp.147-154
    • /
    • 2008
  • Experimental study has been performed in order to investigate the behavior of RC beams strengthened with externally unbonded post-tensioned CFRP (Carbon Fiber Reinforced Polymer) strips using embedded or stud-type plate anchorages. Total 10 small-scaled specimens were manufactured with the different post-tensioning level and types of mechanical anchorage as a main test parameter. A control specimen and specimens with simply bonded CFRP strips were included to compare the structural performances of each system. From the test results, it was observed that the specimens strengthened with simply bonded CFRP strips showed debonding failure below 50% of CFRP tensile strength due to premature debonding. On the other hand, all the specimens strengthened with post- tensioned unbonded CFRP strips reached the rupture strength of the CFRP strip. Also, it was observed that the specimens with stud-type anchorage have equivalent strengthening performance compared with embedded-type anchorage.