• Title/Summary/Keyword: unbonded

Search Result 210, Processing Time 0.027 seconds

Effects of Stressed and Unstressed Reinforcements on Prestressed Concrete Members with Unbonded Tendons

  • Moon, Jeong-Ho;Shin, Kyung-Jae;Lim, Jae-Hyung;Lee, Sun-Hwa
    • KCI Concrete Journal
    • /
    • v.12 no.1
    • /
    • pp.131-138
    • /
    • 2000
  • The research purpose of this paper is to investigate the influential Parameters on the unbonded tendon stress. The parameters were the reinforcing ratio, the prestressing ratio, and the loading type. To this end. first, the influence of parameters were examined with twenty eight test results obtained from references. Then, an experimental study was carried out with nine specimens. Test variables were the reinforcing ratio and the prestressing ratio. Specimens were divided equally into three groups and each group had a different level of the reinforcing ratio. Each specimen within a group has a different level of the prestressing ratio. The investigation with previous and current tests revealed the followings; (1) the length of crack distribution zone does not have a close relation with the length of plastic hinge. (2) the prestressing ratio does not affect both the length of crack distribution and the length of plastic hinge, (3) the tendon stress variation is in reverse relation with the ratios of mild steels and tendons, (4) the loading type nay not affect significantly the length of crack distribution zone, (5) AASHTO LRFD Code equation and Moon/Lim's design equation predicted the test results well with some safety margins.

  • PDF

Optimum seismic design of unbonded post-tensioned precast concrete walls using ANN

  • Abdalla, Jamal A.;Saqan, Elias I.;Hawileh, Rami A.
    • Computers and Concrete
    • /
    • v.13 no.4
    • /
    • pp.547-567
    • /
    • 2014
  • Precast Seismic Structural Systems (PRESSS) provided an iterative procedure for obtaining optimum design of unbonded post-tensioned coupled precast concrete wall systems. Although PRESSS procedure is effective, however, it is lengthy and laborious. The purpose of this research is to employ Artificial Neural Network (ANN) to predict the optimum design parameters for such wall systems while avoiding the demanding iterative process. The developed ANN model is very accurate in predicting the nondimensional optimum design parameters related to post-tensioning reinforcement area, yield force of shear connectors and ratio of moment resisted by shear connectors to the design moment. The Mean Absolute Percent Error (MAPE) for the test data for these design parameters is around %1 and the correlation coefficient is almost equal to 1.0. The developed ANN model is then used to study the effect of different design parameters on wall behavior. It is observed that the design moment and the concrete strength have the most influence on the wall behavior as compared to other parameters. Several design examples were presented to demonstrate the accuracy and effectiveness of the ANN model.

Performance Evaluation of R/C Beam-Column Joint According to Unbonded Rebar (비부착 철근 여부에 따른 RC 보-기둥 접합부의 성능평가)

  • Kwon, Min Ho;Jung, Woo Young;Jung, Jae Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.6
    • /
    • pp.201-211
    • /
    • 2011
  • Many reinforced concrete structures have been constructed at the offshore in Korea and those are exposed in environments for long period. Due to that, the reinforcement of the structure faces possibility of corrosion by the salt damage. Such corrosions are effects on the bond performance between concrete and reinforcing bar as well as the performance of the structure. In this study, the performance of RC structure has been investigated when the reinforcing bars are totally bonded and unbonded in the structure. Through the experimental tests and finite element analyses of beam-column joint with bond and unbonded reinforcing bar, the energy dissipation capacity, strength, and crack distribution are compared and discussed.

Earthquake resistant performance of steel frame with hysteretic damper (시간이력감쇠기를 가진 강골조의 지진저항성능)

  • Chang, Chun-Ho;Kwon, Min-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.3
    • /
    • pp.193-203
    • /
    • 2003
  • This paper highlights research being conducted to identify ground motion and structural characteristics that control the response of concentrically braced frames using hysteretic damper, unbonded brace, and to identify improved design procedures and code provisions. The focus of this paper is on the seismic response of six story concentrically braced frames utilizing hysteretic damper. A brief discussion is provided regarding the mechanical properties of such braces and the benefit of their use. Results of detailed nonlinear dynamic analyses are then examined for specific cases to characterize the effect on key response parameters of structural configurations and proportions.

Snap back testing of unbonded post-tensioned concrete wall systems

  • Twigden, Kimberley M.;Henry, Richard S.
    • Earthquakes and Structures
    • /
    • v.16 no.2
    • /
    • pp.209-219
    • /
    • 2019
  • Unbonded Post-Tensioned (UPT) precast concrete systems have been shown to provide excellent seismic resistance. In order to improve understanding of the dynamic response of UPT systems, a series of snap back tests on four UPT systems was undertaken consisting of one Single Rocking Wall (SRW) and three Precast Wall with End Columns (PreWEC) systems. The snap back tests provided both a static pushover and a nonlinear free vibration response of a system. As expected the SRW exhibited an approximate bi-linear inertia force-drift response during the free vibration decay and the PreWEC walls showed an inertia force-drift response with increased strength and energy dissipation due to the addition of steel O-connectors. All walls exhibited negligible residual drifts regardless of the number of O-connectors or the post-tensioning force. When PreWEC systems of the same strength were compared the inclusion of further energy dissipating O-connectors was found to decrease the measured peak wall acceleration. Both the local and global wall parameters measured at pseudo-static and dynamic loading rates showed similar behaviour, which demonstrates that the dynamic behaviour of UPT walls is well represented by pseudo-static tests. The SRW was found to have Equivalent Viscous Damping (EVD) between 0.9-3.8% and the three PreWEC walls were found to have maximum EVD of between 14.7-25.8%.

Application of shrinkage prediction models to restraint crack formation in unbonded post-tensioned slabs

  • Gabriela R. Martínez Lara;Myoungsu Shin;Yong-Hoon Byun;Goangseup Zi;Thomas H.-K. Kang
    • Computers and Concrete
    • /
    • v.33 no.4
    • /
    • pp.349-359
    • /
    • 2024
  • This study aims to investigate the effect of restraint configuration on crack formation due to shrinkage-and-creep-induced volumetric change in unbonded post-tensioned slabs. The first part of this study focuses on the comparison of existing shrinkage and creep calculation models that are used to predict the volume-changing behavior of concrete. The second part of this study presents the finite element analysis of a series of architectural configuration prototypes subjected to shrinkage and creep, which comprise unbonded post-tensioned slabs with various restraint configurations. The shrinkage and creep effects were simulated in the analysis by imposing strains obtained from one selected calculation model. The results suggest that a slab up to 300 ft. (90 m) in length does not require a closure strip if it is unrestrained by perimeter walls, and that the most effective restraint crack mitigation strategy for a slab restrained by perimeter walls is a partial wall release.

The Effect of Mild Tensile Reinforcement and Effective Prestress on the Flexural Performance of the Prestressed Lightweight Concrete Beams with Unbonded Tendons (비부착 프리스트레스트 경량 콘크리트 보의 휨 거동에 대한 부착 철근과 유효 프리스트레스의 영향)

  • Mun, Ju-Hyun;Yang, Keun-Hyeok;Byun, Hang-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.5
    • /
    • pp.617-626
    • /
    • 2011
  • Seven post-tensioned lightweight concrete (LWC) beam specimens were tested under a symmetrical two-point top loading system. The parameters investigated were the amounts of mild longitudinal reinforcement and effective prestressing. The design compressive strength and dry density of the LWC tested were 30 MPa and 1,770 $kg/m^3$, respectively. Similar to post-tensioned normal weight concrete (NWC) beams, the crack propagation and stress increase of the unbonded tendons were significantly affected by the amounts of mild longitudinal reinforcement and effective prestressing. With the increase in the amounts of mild longitudinal reinforcement and effective prestressing, the serviceability and flexural capacity of the beams were enhanced whereas the stress increase in the unbonded tendons decreased. To control the crack width in post-tensioned LWC beams, a minimum amount of mild longitudinal reinforcement specified in ACI 318-08 provision is required. The flexural behavior of post-tensioned LWC beams and stress increase of the unbonded tendons could be rationally predicted by the proposed non-linear two-dimensional analysis. On the other hand, ACI 318-08 flexure provision was too conservative about the post-tensioned LWC beams.

Nonlinear Flexural Modeling of Prestressed Concrete Beams with Composite Materials (복합소재 프리스트레스트 콘크리트보의 비선형 휨 모델링)

  • ;;Naaman, Antoine
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.6
    • /
    • pp.269-280
    • /
    • 1998
  • Recently, application of composite materials such as fiber reinforced concretes(FRCs) and fiber reinforced plastics(FRPs) in conjunction with conventional structural components has become one of the main research areas. A proper use of advanced composite materials requires understanding their resistance mechanism and failure mode when they are applied to structures or their components. Particular considerations are given in this research to develop an analytical model which can predict the nonlinear flexural responses of bonded and unbonded prestressed concrete beams possibly having layers of different cementitious composite matrices in a section and/or FRP tendons. The block concept is used, which can be regarded as an intermediate modeling method between the couple method with one block and the layered method with multiply sliced layers in a section. In order to find a particular deflection point of a beam under load, solutions to the 2N-variables are found numerically by using approximate N-force equilibrium equations and N-moment equilibirum equations. The model is shown to successfully predict the flexual behavior of variously reinforced bonded and unbonded prestressed concrete beams. The model is also successful in simulating a gradually increasing load after sudden drop inload resistance due to fracture of one or more FRP tendons. This feature is useful in tracing the overall load-deflection response of a beam prestressed with brittle FRP tendons.

Ultimate Stress of Unbonded Tendons in Post-Tensioned Flexural Members (포스트텐션 휨부재에서 비부착긴장재의 극한응력)

  • Lee, Deuck-Hang;Kim, Kang-Su
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.4
    • /
    • pp.489-499
    • /
    • 2009
  • It is quite difficult to predict the flexural strength of post-tensioned members with unbonded tendons (unbonded posttensioned members, UPT members) because of debonding behavior between concrete and prestressing tendons, which is different from that with bonded tendons. Despite many previous researches, our understanding on the flexural strength of UPT members is still insufficient, and thus, national codes use different methods to calculate the strength, which quite often give very different results. Therefore, this paper reviews various existing methods, and aims at proposing an improved rational strength model for UPT flexural members having better accuracy. Additionally, a database containing a large number of test data on UPT flexural members has been established and used for verification of the proposed flexural strength model. The analysis results show that the proposed method provides much better accuracy than many existing methods including the rigid-body model that utilizes the assumption of concentrated deformation and plastic hinge length, and that it also gives proper consideration on the effects of primary parameters such as reinforcement ratio, loading pattern, concrete strength, etc. Especially, the proposed method also well predicts the ultimate stress of unbonded tendons of over-reinforced members, which are often possible in construction fields, and high strength concrete members.