• Title/Summary/Keyword: unbalanced load

Search Result 284, Processing Time 0.035 seconds

The Digital Butterworth Filter of STATCOM for detecting negative sequence components of Unbalanced Load currents (불평형보상용 STATCOM의 역상분 전류 검출을 위한 디지털 버터워쓰 필터)

  • Lim, Su-Saeng;Lee, Eun-Woong;Son, Hong-Kwan;Kim, Seok-Kon;Kim, Jun-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2000.11b
    • /
    • pp.333-335
    • /
    • 2000
  • STATCOM(static synchronous compensator : one of the custom power equipment) can be used for balancing unbalanced loads. Compensation current references are given by the analysis of the unbalanced 3-phase currents. And for detecting negative-sequence components, a digital Butterworth Filter is designed. Finally a negative sequence component of an unbalanced load current is acquired using the digital Butterworth Filter.

  • PDF

The Study on the Active Power Filter in Unbalanced Load (불평형 부하에서의 능동필터에 관한 연구)

  • Choi, See-Young;Lee, Woo-Cheol;Lee, Taeck-Kie;Hyun, Dong-Seok
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.3
    • /
    • pp.130-140
    • /
    • 2001
  • This paper presents the performance of a parallel active power filter(PT) system in unbalanced load condition. The unbalanced load leads to negative sequence of current, and makes 120Hz ripple in the DC-link voltage forcing large capacitance and increases the rating of APF. thus, the separation of negative sequence is performed in synchronous reference frame and controlled to flow into supply network. The validity of the scheme is investigated through simulation and the experimental results for a prototype active power filter system rated at 10kVA.

  • PDF

Design Method of RC Flat Plate Slab Considering Unbalanced Moment (불균형모멘트를 고려한 RC 무량판 슬래브 설계방법)

  • Song, Jin-Kyu;Sing, Ho-Beom;Oh, Sang-Won;Han, Sun-Ae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.149-152
    • /
    • 2008
  • In structural design provision, maximum punching shear stress of slabs is prescribed as combined stress of direct shear occurred by balanced gravity load and eccentric shear occurred by unbalanced moment. This means that the effect of unbalanced moment is considered to decide the punching shear stress. However, from the resistance capacity standpoint, the effect of unbalanced moment strength is not considered for deciding punching shear strength. For this problem, a model to show unbalanced moment-punching shear interrelation was proposed. In the model, the relation between load effect and resistance capacity in unbalanced moment-punching shear was two-dimensionally expressed. Using the interrelation model, a method how unbalanced moment strength should be considered to decide the punching shear strength was proposed. Additionally, a effective width enlargement factor for deciding the unbalanced moment strength of flat plates with shear reinforcements was proposed. The interrelation model proposed in this paper is very effective for the design because not only punching shear and unbalanced moment strengths but also failure modes of flat plates can be accurately predicted.

  • PDF

Droop Control to Compensate Load Voltage Unbalance for Inverter-based Distributed Generations with Unequal Impedance Lines (불균등 임피던스 선로를 갖는 인버터기반 분산전원의 부하전압 불평형을 보상하는 드룹 제어)

  • Yang, Won-Mo;Kim, Hyun-Jun;Han, Byung-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.7
    • /
    • pp.1193-1203
    • /
    • 2016
  • This paper proposes a droop control scheme to compensate the unbalanced line-to-line voltage of unbalanced 3-phase load which is coupled with two inverter-based distributed generations through unequal impedance lines. Unbalanced line-to-line load voltages occur due to using single-phase loads, which brings about bad effects on the coupled inverters and the distributed generations. In order to compensate the unbalanced line-to-line voltages, a positive sequence voltage control was used for sharing the active and reactive power and a negative sequence control was used for reducing the negative sequence voltage. The feasibility of the proposed scheme was first verified by computer simulations, and then experiments with a hardware set-up built in the lab. The experimental results were compared with the simulation results to confirm the feasibility of the proposed scheme.

Constant DC Capacitor Voltage Control based Strategy for Active Load Balancer in Three-phase Four-wire Distribution Systems

  • Win, Tint Soe;Tanaka, Toshihiko;Hiraki, Eiji;Okamoto, Masayuki;Lee, Seong Ryong
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.2
    • /
    • pp.176-183
    • /
    • 2014
  • Three-phase four-wire distribution systems are used for both three-phase three-wire loads and single-phase two-wire consumer appliances in South Korea, Myanmar and other countries. Unbalanced load conditions frequently occur in these distribution systems. These unbalanced load conditions cause unbalanced voltages for three-phase and single-phase loads, and increase the loss in the distribution transformer. In this paper, we propose constant DC capacitor voltage control based strategy for the active load balancer (ALB) in the three-phase four-wire distribution systems. Constant DC capacitor voltage control is always used in active power line conditioners. The proposed control strategy does not require any computation blocks of the active and reactive currents on the distribution systems. Balanced source-side currents with a unity power factor are obtained without any calculation block of the unbalanced active and reactive components on the load side. The basic principle of the constant DC capacitor voltage control based strategy for the ALB is discussed in detail and then confirmed by both digital computer simulations using PSIM software and prototype experimental model. Simulation and experimental results demonstrate that the proposed control strategy for the ALB can balance the source currents with a unity power factor in the three-phase four-wire distribution systems.

Analysis and Control of Instantaneous Voltage Compensator Using New Phase Angle Detection Method Synchronized by Positive Sequence of Unbalanced 3-Phase Source (3상 불평형 전원 시스템의 새로운 위상각 검출기법을 이용한 순간전압보상기의 해석 및 제어)

  • 이승요;고재석;목형수;최규하
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.3
    • /
    • pp.275-284
    • /
    • 1999
  • Unbalanced source voltage in the 3-phase power system is decomposed into positive, negative and zero sequence c components. Also, assuming there is no neutral path in the system, the zero sequence component is not shown on the l load side. Therefore, in the unbalanced power system without neutral path. it is possible to provide balanced voltage to t the load side by compensating negative sequence component and also to regulate the voltage amplitude by controlling t the positive sequence component. In addition, the symmetrical components due to voltage unbalance can be effectively d detected on the synchronous reference frame by using dlongleftarrowq transformation. In this paper, an algorithm not only c compensating unbalanced source voltage by canceling the negative sequence component on the synchronous reference f frame but also maintaining load voltages constantly is proposed. Also a novel method for phase angle detection s synchronized by positive sequence component under unbalanced source voltage is suggested and this detected phase a angle is used for d-q transformation. The performances and characteristics of the proposed compensating system are a analyzed by simulation and verified through experimental results.

  • PDF

An Improved Load Control Strategy for the Ultimate Analysis of Curved Prestressed Concrete Cable-Stayed Bridge (곡선 PSC 사장교의 극한해석을 위한 개선된 하중제어법)

  • Choi, Kyu-Chon;Lee, Jae-Seok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.1
    • /
    • pp.1-13
    • /
    • 2009
  • A study for the nonlinear solution strategies to predict the ultimate behavior of a curved PSC cable-stayed bridge with complex geometry and highly nonlinear characteristics is presented. The load and displacement control strategies are used and found to be stable for the nonlinear solution of the PSC bridge up to the moderately excessive load. The ultimate analysis of curved PSC cable-stayed bridge using these solution strategies is not converged due to the propagation of the cracks in the wide range of the concrete elements and excessive variation of the stresses in the concrete elements and cables according to the complex geometry. The load control strategy using scale-down of the unbalanced loads is proposed as an alternative method for the case that the solution is not converged due to the severe nonlinearities involved in the PSC structures like a curved PSC cable-stayed bridge. Through the ultimate analysis of the PSC girder, the accuracy and the stability of the proposed solution strategies are evaluated. Finally, the numerical results for the ultimate analysis of the curved PSC cable-stayed bridge using scale-down of the unbalanced loads are compared with those obtained from other investigator. The validity of the proposed nonlinear solution strategy is demonstrated fairly well.

An Optimal Design Study of an Equilibrating-Mechanism for the Unbalanced Elevation-Drive System (정적 불균형 모멘트가 존재하는 고저구동장치의 평형 메카니즘 최적설계 연구)

  • Park, Keun-Kuk;Lee, Man-Hyung;Kim, Dong-Hyun;Ahn, Rae-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.11
    • /
    • pp.1033-1038
    • /
    • 2000
  • The unbalanced heavy-loaded elevation-drive system is composed of a hydraulic cylinder, a driving link-mechanism and an equilibrating-mechanism which compensate the static unbalanced moment of the elevation load. The Compensator for the unbalanced moment is composed of a hydrau-pneumatic accumulator and a hydraulic cylinder which act with the elevation cylinder together. Compensation of the variable static-unbalanced moment for the elevation-drive system is very difficult because these mechanisms imply highly nonlinear properties due to air conditioning characteristics and mechanical rotation of the link-mechanism. In this study, through the analysis of the already designed equilibrating-mechanism, the optimal design parameters of the equilibrating-mechanism is suggested.

  • PDF

Control of DC-side Voltage Unbalance among Phases in Multi-level H-Bridge STATCOM with Unbalanced Load (불평형부하를 가지는 다단 H-bridge STATCOM에서 상간 직류전압 불평형의 제어)

  • Kwon, Byung-Ki;Jung, Seung-Ki;Kim, Tae-Hyeong
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.332-341
    • /
    • 2014
  • A cascaded H-bridge multi-level STATCOM(STATic synchronous COMpensator), which is composed of many cell inverters with independent dc-sources, generates inevitably dc-side voltage unbalance among phases when it compensates unbalanced load. It comes from the difference of flowing active power in each phase when this compensator makes negative-sequence current to eliminate the unbalance of source-side current. However, this unbalance can be controlled by injecting zero-sequence current which is decoupled with grid currents, so the compensator can work well during this balancing process. Both a feedback control algorithm, which produces zero-sequence current proportional to dc-side voltage unbalance within each phase, and a feedforward control algorithm, which makes zero-sequence current directly from the compensator's negative-sequence current, were proposed. The dc-side voltage of each phase can be controlled stably by these proposed algorithms in both steady-state and transient, so the compensator can have fast response to satisfy control performance under rapid changing load. These balancing controllers were implemented and verified via simulation and experiment.

Nonlinear Control of Three-phase Split-Capacitor Inverters under Unbalanced and Nonlinear Load Conditions

  • Nguyen, Qui Tu Vo;Lee, Dong-Choon
    • Proceedings of the KIPE Conference
    • /
    • 2012.11a
    • /
    • pp.52-53
    • /
    • 2012
  • This paper presents a new control scheme for a three-phase split DC-link capacitor inverter as an AC power supplies. The proposed control method can maintain the balanced sinusoidal output voltage under unbalanced and nonlinear load conditions. The validity of the control method has been verified by simulation results.

  • PDF