An Improved Load Control Strategy for the Ultimate Analysis of Curved Prestressed Concrete Cable-Stayed Bridge

곡선 PSC 사장교의 극한해석을 위한 개선된 하중제어법

  • 최규천 (한국도로공사 도로교통연구원) ;
  • 이재석 (충북대학교 토목공학부)
  • Published : 2009.02.28

Abstract

A study for the nonlinear solution strategies to predict the ultimate behavior of a curved PSC cable-stayed bridge with complex geometry and highly nonlinear characteristics is presented. The load and displacement control strategies are used and found to be stable for the nonlinear solution of the PSC bridge up to the moderately excessive load. The ultimate analysis of curved PSC cable-stayed bridge using these solution strategies is not converged due to the propagation of the cracks in the wide range of the concrete elements and excessive variation of the stresses in the concrete elements and cables according to the complex geometry. The load control strategy using scale-down of the unbalanced loads is proposed as an alternative method for the case that the solution is not converged due to the severe nonlinearities involved in the PSC structures like a curved PSC cable-stayed bridge. Through the ultimate analysis of the PSC girder, the accuracy and the stability of the proposed solution strategies are evaluated. Finally, the numerical results for the ultimate analysis of the curved PSC cable-stayed bridge using scale-down of the unbalanced loads are compared with those obtained from other investigator. The validity of the proposed nonlinear solution strategy is demonstrated fairly well.

이 논문에서는 복잡한 기하학적 형상과 비선형 특성들을 보이는 곡선 프리스트레스트 콘크리트(PSC) 사장교의 극한거동을 안정적으로 예측하기 위한 비선형 해법을 제시하였다. PSC 교량 구조물의 비선형 거동 및 극한거동을 예측하기 위한 해법으로서 하중제어법(load control strategy)과 변위제어법(displacement control strategy)을 적용하였다. 콘크리트의 과다한 균열과 재료상태 및 케이블 장력의 급격한 변화로 인해 불평형력(unbalanced load)이 크게 변화하여 이들 두 해법으로 해를 구할 수 없는 경우에 대한 대안으로서 불평형력을 적정한 비율로 감소시키면서 하중제어 법을 적용하여 해를 안정적으로 구해 나가는 불평형력 감쇠(scale-down of the unbalanced load)를 적용한 하중제어법을 제시하였다. PSC 거더교의 극한해석을 수행하여 불평형력 감쇠를 적용한 하중제어법의 정당성을 평가하였다. 또한 곡선 PSC 사장교의 극한해석에 이 논문에서 제시한 비선형 해법을 적용하여 복잡한 비선형성으로 인해 해가 수렴하기 어려운 해석에도 이 해법이 유용함을 확인하였다.

Keywords

References

  1. 이재석, 최규천 (2005) 3차원 프리스트레스 콘크리트 뼈대의 비선형 해석, 대한토목학회논문집, 25(1A), pp.163-172
  2. Abbas. S. (1993) Nonlinear geometric. material and time dependent analysis of segmentally erected. three dimensional cable stayed bridges. Report No. UCB/SE:MM-93/09. Dept. of Civil Eng .. University of California Berkeley
  3. ACI Committee 209 (2002) Prediction of Creep. Shrinkage and Temperature Effects in Concrete Structures. ACI Manual of Concrete Practice. Part 1-2002. American Concrete Institute
  4. Bathe, K.J. (1996) Finite element procedures. Prentice-Hail Inc .. Englewood Cliffs
  5. Batoz, J.L., Dhatt, G. (1979) Incremental Displacement Algorithms for Nonlinear Problem. Intl. J. for Numerical Methods in Engineering. 14
  6. Chan, E.C. (1982) Nonlinear geometric. material and time dependent analysis of reinforced concrete shells with edge beams. Report No. UCB/SE:MM-82/08. Department of Civil Engineering. University of California Berkeley
  7. Choudhury, D. (1986) Analysis of curved nonprismatic reinforced and prestressed concrete box girder bridges. Report No. UCB/SE:MM-86/13. Department of Civil Engineering. University of California Berkeley
  8. Crisfield, M.A. (1981) A Fast Incremental/Iterative Solution Procedure that Handles Snap-Through. Computers and Structures. 13
  9. Haisler, W.E., Stricklin, J.A. (1977) Displacement Incrementation in Nonlinear Structure Analysis by the Self Correcting Method, IntI. J. for Numerical Methods in Engineering, 11
  10. Kent, D.C., Park, R. (1971) Flexural members with confined concrete, Journal of the structural division, ASCE, 97 (ST7), pp.1969-1990
  11. Mari, A.R. (2000), Numerical Simulation of the Segmental Construction of Three Dimensional Concrete Frames, Engineering Structures, 22, pp.586-596 https://doi.org/10.1016/S0141-0296(99)00009-7
  12. Powell, G., Simons, J. (1981) Improved iteration strategy for nonlinear structures, IntI. J. for Numerical Methods in Engineering, 17. pp.1455-1467 https://doi.org/10.1002/nme.1620171003
  13. Ranier, A.B., Francisco, P.S.L.G., Americo, C.F. (2003) Numerical Model for Prestressed Composite Concrete Flexural Members, J. of Advanced Concrete Technology, 1(2), pp.201-210 https://doi.org/10.3151/jact.1.201
  14. Riks, E. (1979) An incremental Approch to the Solution of Snapping and Buckling Problems, IntI. J. of Solids and Structures, 15 https://doi.org/10.1016/0020-7683(79)90081-7