• Title/Summary/Keyword: unbalance response vibration

Search Result 93, Processing Time 0.036 seconds

The Dynamic Performance Analysis of Foil Journal Bearings Considering Coulomb Friction: Rotating Unbalance Response (마찰을 고려한 포일저널베어링의 동특성해석: 회전불균형 응답)

  • Kim, Kyung-Woong;Lee, Dong-Hyun;Kim, Young-Cheol
    • Tribology and Lubricants
    • /
    • v.23 no.5
    • /
    • pp.219-227
    • /
    • 2007
  • The dynamic performance of air foil bearings relies on a coupling between a thin air film and an elastic foil structure. A number of successful analytical techniques to predict dynamic performance have been developed. However, the evaluation of its dynamic characteristic is still not enough because of the mechanical complexity of the foil structure and strong nonlinear behavior of friction force. This work presents a nonlinear transient analysis method to predict dynamic performance of foil bearings. In this method, time dependent Reynolds equation is used to calculate pressure distribution and a finite element method is used to model the bump foil structure. The analysis is treated with a direct implicit integration technique that can handle nonlinear problems and the stick-slip algorithm is used to consider friction force. Using this method the response to the mass unbalance excitation is investigated for various design parameters and operating conditions. The results of analysis show that foil bearing is very effective on the restriction of vibration at the resonance frequency compared to the rigid surface bearings and the effectiveness depends on the operating conditions, static load and a amount of mass unbalance. In addition, there exist optimum values of friction coefficient, bump foil stiffness and number of circumferential slit with regards to minimizing dynamic response at the resonance frequency. These optimum values are system dependent.

FEM/BEM Modeling of the Top Cap of Scroll Compressors for Analysis of Noise Radiation (스크롤 압축기 상부 캡의 방사 소음 해석을 위한 유한 요소/경계 요소 모델링)

  • Ahn, Jae-Hong;Song, Jae-Soo;Kim, Sung-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.346-350
    • /
    • 2000
  • In scroll compressors, there are two major noise sources. Sturctural path: excitation of the compressor housing by unbalance forces and forces generated by compression cycle. Gas cavity path: excitation of top cap by discharge gas pulsation. In this study, in order to analyze the radiated noise generated by the discharge gas pulsation, FEM/BEM model of the top cap is established. Measured pressure of discharge pulsation is introduced in the FEM model as the excitation and vibration response is calculated. Radiated sound pressure is then obtained by BEM method based on this vibration response. Results are compared with the measured data. It is shown that the trend of the noise radiation can be predicted in this approadch.

  • PDF

A Study for Application of Active Magnetic Bearing using Quantitative Feedback Theory (Quantitative Feedback Theory를 이용한 능동 자기베어링의 적용 연구)

  • Lee, Gwan-Yeol;Lee, Hyeong-Bok;Kim, Yeong-Bae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.11
    • /
    • pp.107-115
    • /
    • 2001
  • Most of rotating machineries supported by contact bearing accompany lowering efficiency, vibration and wear. Moreover, because of vibration, which is occurred in rotating shaft, they have the limits of driving speed and precision. The rotor system has parametric variations or external disturbances such as mass unbalance variations in long operation. Therefore, it is necessary to research about magnetic bearing, which is able to support the shaft without mechanical contact and to control rotor vibration without being affected by external disturbances or parametric changes. Magnetic bearing system in the paper is composed of position sensor, digital controller, actuating amplifier and electromagnet. This paper applied the robust control method using quantitative feedback theory (QFT) to control the magnetic bearing. It also proposed design skill of optimal controller, in case the system has structured uncertainty, unstructured uncertainty and disturbance. Reduction of vibration is verified at critical rotating speed even external disturbance exists. Unbalance response, a serious problem in rotating machinery, is improved by magnetic bearing using QFT algorithm.

  • PDF

Analytical evaluation of water injection pump dynamic characteristic (물 분사 펌프 동특성의 해석적 평가)

  • Lee, JongMyeong;Lee, JeongHoon;Ha, JeongMin;Ahn, ByungHyun;Gu, DongSik;Choi, ByeongKeun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.60-64
    • /
    • 2013
  • Water injection pump produced the 1st oil well through the high pressure after the Deep water oil well drilling. After finish the work it is hard to produce only using itself pressure due to low pressure. Therefore it can be increased recovery factor through the injection seawater of high pressure. Is the key equipment used in the marine plant and it is developing at many industries. In this paper, Analyze changes in the natural frequency due to the stiffness of the bearing. Analyze the critical speed of the natural frequency due to the change of operation speed. And evaluate the Stability. And then analyze the displacement and clearance through the unbalance response this way has contributed to the reliability of the developing product. Through a mathematical analysis.

  • PDF

Dynamic Behavior of Rotor in Switched Reluctance Motor Due to Unbalanced Mass (질량 불평형에 의한 SRM 회전자의 동적 거동에 관한 연구)

  • Ha, Gyeong-Ho;Hong, Jeong-Pyo;Kim, Gyu-Taek;Jang, Gi-Chan
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.5
    • /
    • pp.305-312
    • /
    • 2000
  • This study deals with the dynamic response of a rotor in Switched Reluctance Motor(SRM) caused by the unbalance force such as the unbalanced mass and electromagnetic force. The method to analyze the mechanical response of the rotor supported on the bearing is based on an extension of the 3-dimensional Transfer Matrix Method(TMM) coupled with the electromagnetic force calculated by Maxwell stress tensor. The displacement of the rotor as a function of frequency according to the position of the unbalanced mass is evaluated from the frequency response function (FRF). The rotor behaviour with the electromagnetic force is compared with that without the electromagnetic force. In addition, the resonance speeds and the vibration modes are analyzed and demonstrated in this paper. These results are useful in designing the mechanical rotor and in balancing properly the rotor to reduce vibration and noise.

  • PDF

Rotordynamic Analysis of a Dry Vacuum Pump Rotor-Bearing System for High-Speed Operation (고속 운전용 건식진공펌프 로터-베어링 시스템의 회전체동역학 해석)

  • Lee, An-Sung;Lee, Dong-Hwan;Kim, Byung-Ok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.523-530
    • /
    • 2006
  • A rotordynamic analysis was performed with a dry vacuum pump, which is a major equipment in modern semiconductor and LCD manufacturing processes. The system is composed of screw rotors, lobes picking air, helical gears, driving motor, and support rolling element hearings of rotors and motor. The driving motor-screw rotor system has a rated speed of 6,300rpm, and was modeled utilizing a rotordynamic FE method for analysis, which was verified through the results of its 3-D finite element model. As loadings on the bearings due to the gear action were significant in the system considered, each resultant bearing load was calculated determinately and indeterminately by considering the generalized forces of the gear action as veil as the rotor itself. Each resultant hearing loading was used in calculating each stiffness of rolling element bearings. Design goals are to achieve wide separation margins of critical speeds and favorable unbalance responses of the rotor in the operating range. Then, a complex rotordynamic analysis of the system was carried out to evaluate its forward synchronous critical speeds, whirl natural frequencies and mode shapes, and unbalance responses under various unbalance locations. Results show that the entire system is well designed in the operating range. In addition, the procedure of rotordynamic analysis for dry vacuum pump rotor-bearing system was proposed and established.

  • PDF

Three-Dimensional Rotordynamic Analysis Considering Bearing Support Effects (베어링 지지 효과를 고려한 3 차원 로터동역학 해석)

  • Park, Hyo-Keun;Kim, Dong-Hyun;Kim, Myung-Kuk;Chen, Seung-Bae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.902-909
    • /
    • 2006
  • In this study, three-dimensional rotordynamic analyses have been conducted using equivalent beam, hybrid and fun three-dimensional models. The Present computational method is based on the general finite element method with rotating gyroscopic effects of a rotor system. General purpose commercial finite element code, SAMCEF which includes practical rotordynamics module with various types of rotor analysis methods and bearing elements is applied. For the purpose of numerical verification, comparison study for a benchmark rotor model with support bearings is performed first. Detailed finite element models based on three different modeling concepts are constructed and then computational analyses are conducted for the realistic and complex three-dimensional rotor system. The results for rotor stability and mass unbalance response are presented and compared with the experimental vibration test conducted in this study.

  • PDF

Rotordynamic Characteristics Analysis for API 610 BB5 Pump Development (API 610 BB5 펌프 개발을 위한 로터다이나믹 특성분석)

  • Kim, Byung-Ok;Lee, An-Sung;Kim, Sung-Ki
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.4
    • /
    • pp.38-44
    • /
    • 2011
  • This paper deals with the detail rotordynamic analysis for BB5 eight stages pump as development of API 610 BB5 type pump. Dry-run analytical model, not considering operating fluid, and wet-run analytical model, considering operating fluid are established. In addition, plain circular and pressure dam bearings are chosen and it was discussed that each bearing has an effect on dynamic characteristics of pump rotor system. A rotordynamic analysis includes the critical speed map, Campbell diagram, stability, and unbalance response. As results, it was predicted that rated speed of the pump rotor passes through 1st critical speed in dry-run condition regardless of bearings, however, it was verified that, in wet-run condition, the rotor system doesn't have critical speeds even if more than twice rated speed. Hence the resonance problem caused by the critical speeds does not happen since actual operating is in wet-run condition including operating fluid. As a result of unbalance response analysis, the pump rotor has stable vibration response at rated speed, regardless of operating fluid and the proposed bearing types.

Robust Design of Leaf Spring of a Polygon Mirror Scanner Motor Against Shock (충격에 강인한 폴리곤 미러 스캐너 모터의 판 스프링 설계)

  • Lee, Sang-Wook;Kim, Myung-Gyu;Jung, Kyung-Moon;Jang, Gun-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.515-520
    • /
    • 2008
  • This paper develops a mite element model of a polygon mirror scanner motor supported by the sintered bearing and flexible supporting structures to analyze the shock response by using the finite element method and the mode superposition method. The validity of the proposed model is verified by comparing the simulated natural frequencies and shock response with the experimental ones. It investigates the displacement and the stress of the most vulnerable component, i.e. a leaf spring due to shock, and it proposes a robust design of leaf spring of a polygon mirror scanner motor against shock.

  • PDF

Vibration Analysis of Hydraulic Turbine-Generator Rotor (수차발전기 축계의 진동해석)

  • 김용한;손병구;최병근;양보석;하현천
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.250-254
    • /
    • 1998
  • Pump-storage power plants, which pumps water from the lower reservoir to the upper reservoir using the extra electronic power at night and generates the electronic power in the daytime, are more increasing. Currently it has a tendency to be high-head large-capacity machines. So in the processing of design, we need to know the vibration characteristics of pump-turbine shaft system sufficiently. In this paper, we developed the computer programs for analyzing pump-turbine shaft system considering magnetic force of generator, hydraulic force at runner, dynamic characteristics of guide bearings and the effect of add mass of water. And the superiority of this program was verified by applying it to the real model and calculating high quality critical speed, natural mode and unbalance response.

  • PDF