• 제목/요약/키워드: un-bonded strengthening

검색결과 3건 처리시간 0.016초

Experimental study on long-term behaviour of CFRP strengthened RC beams under sustained load

  • Ahmed, Ehsan;Sobuz, Habibur Rahman
    • Structural Engineering and Mechanics
    • /
    • 제40권1호
    • /
    • pp.105-120
    • /
    • 2011
  • The strengthening and rehabilitation of reinforced concrete structures with externally bonded carbon fibre reinforced polymer (FRP) laminates has shown excellent performance and, as a result, this technology is rapidly replacing steel plate bonding techniques. This paper addresses this issue, and presents results deals with the influence of external bonded CFRP-reinforcement on the time-dependent behavior of reinforced concrete beams. A total of eight reinforced concrete beams with cracked and un-cracked section, with and without externally bonded CFRP laminates, were investigated for their creep and shrinkage behavior. All the beams considered in this paper were simply supported and subjected to a uniform sustained loading for the period of six months. The main parameters of this study are two types of sustained load and different degrees of strengthening scheme for both cracked and un-cracked sections of beams. Both analytical and experimental work has been carried out on strengthened beams to investigate the cracking and deflection performance. The applied sustained load was 56% and 38% of the ultimate static capacities of the un-strengthened beams for cracked and un-cracked section respectively. The analytical values based on effective modulus method (EMM) are compared to the experimental results and it is found that the analytical values are in general give conservative estimates of the experimental results. It was concluded that the attachment of CFRP composite laminates has a positive influence on the long term performance of strengthened beams.

Shear strengthening of deficient concrete beams with marine grade aluminium alloy plates

  • Abu-Obeidah, Adi S.;Abdalla, Jamal A.;Hawileh, Rami A.
    • Advances in concrete construction
    • /
    • 제7권4호
    • /
    • pp.249-262
    • /
    • 2019
  • In this study, high strength aluminum alloys (AA) plates are proposed as a new construction material for strengthening reinforced concrete (RC) beams. The purpose of this investigation is to evaluate AA plate's suitability as externally bonded reinforcing (EBR) materials for retrofitting shear deficient beams. A total of twenty RC beams designed to fail in shear were strengthened with different spacing and orientations. The specimens were loaded with four-points loading till failure. The considered outcome parameters included load carrying capacity, deflection, strain in plates, and failure modes. The results of all tested beams showed an increase up to 37% in the load carrying capacity and also an increase in deflection compared to the control un-strengthened beams. This demonstrated the potential of adopting AA plates as EBR material. Finally, the shear contribution from the AA plates was predicted using the models available in the ACI440-08, TR55 and FIB14 design code for fiber reinforced polymer (FRP) plates. The predicted results were compared to experimental testing data with the ratio of the experimentally measured ultimate load to predicted load, range on the average, between 93% and 97%.

강봉 및 유리섬유로 비부착 보강된 조적벽체의 내진 저항성 평가 (Seismic Resistance of Masonry Walls Strengthened with Unbonded Prestressed Steel Bars and Glass Fiber Grids)

  • 백지성;양근혁;황승현;최용수
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제24권5호
    • /
    • pp.17-26
    • /
    • 2020
  • 이 연구에서는 조적벽체의 내진보강을 위하여 프리스트레스트 강봉 및 유리섬유 망을 이용하여 개발된 비부착 공법의 구조적 효율성을 평가하였다. 주요 실험변수는 강봉 및 유리섬유 망의 개별 보강과 강봉과 유리섬유 망의 복합 보강이다. 실험결과 제안된 보강공법은 조적벽의 내력, 강성 및 연성향상에 효율적이었다. 보강되지 않은 조적벽의 횡하중 내력, 최대내력 이전의 강성 및 에너지소산 능력과 비교할 때, 유리섬유 망으로 보강된 벽체에서의 그 증가비는 각각 110%, 120% 및 360%이며, 프리스트레스트 강봉으로 보강된 벽체에서의 그 증가비는 각각 140%, 130% 및 510%이며, 유리섬유 망과 강봉으로 보강된 벽체에서의 그 증가비는 각각 160%, 130% 및 840%이었다. 제시된 기술로 보강된 조적벽의 횡하중 내력은 Yang et al.의 제안식을 이용한 예측값과 비교적 잘 일치하였다. 즉, 제안된 기술은 조적벽체의 내진보강을 위한 적용성으로서 구조적 잠재력이 높았다.