• Title/Summary/Keyword: umbilical cord

Search Result 190, Processing Time 0.032 seconds

Bio-inert Surface of Pluronic-immobilized Flask for Preservation of Hematopoietic Stem Cells

  • Higuchi, Akon;Aoki, Nobuo;Gomei, Yumiko;Matsuoka, Yuki
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.267-267
    • /
    • 2006
  • Human umbilical cord blood was stored at $4^{\circ}C$ in the Pluronic-immobilized flask as well as commercially available bio-inert flasks, and flow cytometric analysis of surface markers was performed on hematopoietic stem cells after cultivation. The number of cells expressing $CD34^{+}$ in umbilical cord blood on the Pluronic-immobilized flask was extremely higher than those obtained using other flasks. It is concluded that the flexible and hydrophilic segments of Pluronic conjugated on the flask surface are the reason for the effective preservation of hematopoietic stem cells in the Pluronic-immobilized flask.

  • PDF

ENDOTHELIAL PROGENITOR CELLS AND MESENCHYMAL STEM CELLS FROM HUMAN CORD BLOOD (제대혈 내피기원세포 및 간엽줄기세포의 분화에 대한 연구)

  • Kim, Eun-Seok;Kim, Hyun-Ok
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.31 no.1
    • /
    • pp.39-45
    • /
    • 2005
  • Stem cell therapy using mesenchymal stem cells(MSCs) transplantation have been paid attention because of their powerful proliferation and pluripotent differentiating ability. Although umbilical cord blood (UCB) is well known to be a rich source of hematopoietic stem cells with practical and ethical advantages, the presence of mesenchymal stem cells (MSCs) in UCB has been controversial and it remains to be validated. In this study, we examine the presence of MSCs in UCB harvests and the prevalence of them is compared to that of endothelial progenitor cells. For this, CD34+ and CD34- cells were isolated and cultured under the endothelial cell growth medium and mesenchymal stem cell growth medium respectively. The present study showed that ESC-like cells could be isolated and expanded from preterm UCBs but were not acquired efficiently from full-terms. They expressed CD14-, CD34-, CD45-, CD29+, CD44+, CD105+ cell surface marker and could differentiate into adipogenic and osteogenic lineages. Our results suggest that MSCs are fewer in full-term UCB compared to endothelial progenitor cells.

In vitro Expansion of Umbilical Cord Blood Derived Mesenchymal Stem Cells (UCB-MSCs) Under Hypoxic Conditions

  • Yang, Jungyun;Kwon, Jihye;Kim, Miyeon;Bae, Yunkyung;Jin, Hyejin;Park, Hohyun;Eom, Young Woo;Rhee, Ki-Jong
    • Biomedical Science Letters
    • /
    • v.21 no.1
    • /
    • pp.40-49
    • /
    • 2015
  • Mesenchymal stem cells (MSCs) have the ability to self-renew and differentiate into multi-lineage cells, thus highlighting the feasibility of using umbilical cord blood-derived MSCs (UCB-MSCs) for cell-therapy and tissueengineering. However, the low numbers of UCB-MSC derived from clinical samples requires that an ex vivo expansion step be implemented. As most stem cells reside in low oxygen tension environments (i.e., hypoxia), we cultured the UCBMSCs under 3% $O_2$ or 21% $O_2$ and the following parameters were examined: proliferation, senescence, differentiation and stem cell specific gene expression. UCB-MSCs cultured under hypoxic conditions expanded to significantly higher levels and showed less senescence compared to UCB-MSCs cultured under normoxic conditions. In regards to differentiation potential, UCB-MSCs cultured under hypoxic and normoxic conditions both underwent similar levels of osteogenesis as determined by ALP and von Kossa assay. Furthermore, UCB-MSCs cultured under hypoxic conditions exhibited higher expression of OCT4, NANOG and SOX2 genes. Moreover, cells expanded under hypoxia maintained a stem cell immnunophenotype as determined by flow cytometry. These results demonstrate that the expansion of human UCB-MSCs under a low oxygen tension microenvironment significantly improved cell proliferation and differentiation. These results demonstrate that hypoxic culture can be rapidly and easily implemented into the clinical-scale expansion process in order to maximize UCB-MSCs yield for application in clinical settings and at the same time reduce culture time while maintaining cell product quality.

Establishment of High Throughput Screening System Using Human Umbilical Cord-derived Mesenchymal Stem Cells

  • Park, Eu-Gene;Cho, Tae-Jun;Oh, Keun-Hee;Kwon, Soon-Keun;Lee, Dong-Sup;Park, Seung-Bum;Cho, Jae-Jin
    • International Journal of Oral Biology
    • /
    • v.37 no.2
    • /
    • pp.43-50
    • /
    • 2012
  • The use of high throughput screening (HTS) in drug development is principally for the selection new drug candidates or screening of chemical toxicants. This system minimizes the experimental environment and allows for the screening of candidates at the same time. Umbilical cord-derived stem cells have some of the characteristics of fetal stem cell and have several advantages such as the ease with which they can be obtained and lack of ethical issues. To establish a HTS system, optimized conditions that mimic typical cell culture conditions in a minimal space such as 96 well plates are needed for stem cell growth. We have thus established a novel HTS system using human umbilical cord derived-mesenchymal stem cells (hUC-MSCs). To determine the optimal cell number, hUC-MSCs were serially diluted and seeded at 750, 500, 200 and 100 cells per well on 96 well plates. The maintenance efficiencies of these dilutions were compared for 3, 7, 9, and 14 days. The fetal bovine serum (FBS) concentration (20, 10, 5 and 1%) and the cell numbers (750, 500 and 200 cells/well) were compared for 3, 5 and 7 days. In addition, we evaluated the optimal conditions for cell cycle block. These four independent optimization experiments were conducted using an MTT assay. In the results, the optimal conditions for a HTS system using hUC-MSCs were determined to be 300 cell/well cultured for 8 days with 1 or 5% FBS. In addition, we demonstrated that the optimal conditions for a cell cycle block in this culture system are 48 hours in the absence of FBS. In addition, we selected four types of novel small molecule candidates using our HTS system which demonstrates the feasibility if using hUC-MSCs for this type of screen. Moreover, the four candidate compounds can be tested for stem cell research application.

Differentiation of Dopaminergic Neurons from Mesenchymal-Like Stem Cells Derived from Human Umbilical Cord Vein

  • Kim, Ju-Ran;Lee, Jin-Ha;Jalin, Anjela Melinda;Lee, Chae-Yeon;Kang, Ah-Reum;Do, Byung-Rok;Kim, Hea-Kwon;Kam, Kyung-Yoon;Kang, Sung-Goo
    • Development and Reproduction
    • /
    • v.13 no.3
    • /
    • pp.173-181
    • /
    • 2009
  • One of the most extensively studied populations of multipotent adult stem cells are mesenchymal stem cells (MSCs). MSCs derived from the human umbilical cord vein (HUC-MSCs) are morphologically and immunophenotypically similar to MSCs isolated from bone marrow. HUC-MSCs are multipotent stem cells, differ from hematopoietic stem cells and can be differentiated into neural cells. Since neural tissue has limited intrinsic capacity of repair after injury, the identification of alternate sources of neural stem cells has broad clinical potential. We isolated mesenchymal-like stem cells from the human umbilical cord vein, and studied transdifferentiation-promoting conditions in neural cells. Dopaminergic neuronal differentiation of HUC-MSCs was also studied. Neural differentiation was induced by adding bFGF, EGF, dimethyl sulfoxide (DMSO) and butylated hydroxyanisole (BHA) in N2 medium and N2 supplement. The immunoreactive cells for $\beta$-tubulin III, a neuron-specific marker, GFAP, an astrocyte marker, or Gal-C, an oligodendrocyte marker, were found. HUC-MSCs treated with bFGF, SHH and FGF8 were differentiated into dopaminergic neurons that were immunopositive for tyrosine hydroxylase (TH) antibody. HUC-MSCs treated with DMSO and BHA rapidly showed the morphology of multipolar neurons. Both immunocytochemistry and RT-PCR analysis indicated that the expression of a number of neural markers including NeuroD1, $\beta$-tubulin III, GFAP and nestin was markedly elevated during this acute differentiation. While the stem cell markers such as SCF, C-kit, and Stat-3 were not expressed after neural differentiation, we confirmed the differentiation of dopaminergic neurons by TH/$\beta$-tubulin III positive cells. In conclusion, HUC-MSCs can be differentiated into dopaminergic neurons and these findings suggest that HUC-MSCs are alternative cell source of therapeutic treatment for neurodegenerative diseases.

  • PDF

Six-years' Experience of Pseudomosaicism and Maternal Cell Contamination in Cultured Amniocytes

  • Moon, Shin-Yong;Jee, Byung-Chul;Kim, Seok-Hyun;Oh, Sun-Kyung;Park, Joong-Shin;Choi, Young-Min
    • Journal of Genetic Medicine
    • /
    • v.3 no.1
    • /
    • pp.25-27
    • /
    • 1999
  • Purpose: To present our experiences in pseudomosaicism or maternal cell contamination in genetic mid-trimester amniocentesis confirmed through percutaneous umbilical blood sampling. Methods: From 1992 to 1997, repeated cytogenetic evaluation with fetal cord blood was carried out in 14 cases showing mosaic patterns. Results: We confirmed pseudomosaicism in 12 cases (85.7%) by repeated cytogenetic evaluation, and also maternal cell contamination in 2 cases. Conclusion: Repeated cytogenetic evaluation via percutaneous umbilical blood sampling was a rapid and useful method for the confirmation of mosaicism resulted from genetic mid-trimester amniocentesis.

  • PDF

Plasma Concentrations of Fe, Cu, Mn, and Cr of Maternal and Umbilical Cord Blood during Pregnancy

  • Lee, Jong-Im;Lim, Hyeon-Sook;Cho, Young-Sook
    • Preventive Nutrition and Food Science
    • /
    • v.7 no.3
    • /
    • pp.282-286
    • /
    • 2002
  • Anemia is prevalent among pregnant women in Korea, and Fe deficiency anemia is a major nutritional problem throughout the world. Because studies of Cu, Mn, and Cr levels excluding Fe are rare, we were interested in changes in the nutritional status of these trace minerals and their relationship to hematogenesis. Accordingly, we determined the changes in plasma Fe, Cu, Mn, and Cr concentrations of maternal and umbilical cord blood during pregnancy, and evaluated the relationships between them at different time points during pregnancy. A total of 81 women participated in the study: 26 subjects in the first trimester, 23 in the second, and 32 in the third trimester. Plasma Fe levels were lower significantly (p<0.05) in the third trimester. Plasma Cu level ($\mu\textrm{g}$/dL) in each trimester were 86.6$\pm$13.8, 111.6$\pm$27.9, and 114.0$\pm$29.7, respectively; with significant increases (p<0.()5) in the second and third trimester. Plasma Mn concentrations (pg/dL) in each trimester were 212.6$\pm$89.0, 234.0$\pm$140.0, and 240.3$\pm$166.0, respectively and tended to increase, though not significantly, as the pregnancies progressed. The plasma concentrations of Cr (pg/dL) in each trimester were 3.7$\pm$2.0, 3.1$\pm$1.0, and 2.4$\pm$1.2, respectively; and was significantly lower (p<0.05) in the third trimester. In umbilical cord blood, the plasma level of Fe was 194.8$\pm$74.6 $\mu\textrm{g}$/dL, Cu was 57.5$\pm$10.9 $\mu\textrm{g}$/dL, Mn was 482.4$\pm$111.1 pg/dL, and Cr was 9.3$\pm$2.8 pg/dL. Plasma concentrations of Fe, Cu, Mn, and Cr of cord blood were 300 %, 50 %, 200 %, and 370% as compared to those of maternal blood in the third trimester. These results suggest that an active transport mechanism for the transport of Fe, Mn, and Cr from mother to fetus may exist, whereas, for Cu, the placenta appears to have a blocking effect on the transport from mother to baby.