• Title/Summary/Keyword: ultraviolet (UV)

Search Result 1,212, Processing Time 0.027 seconds

Polybenzimidazole (PBI) Coated CFRP Composite as a Front Bumper Shield for Hypervelocity Impact Resistance in Low Earth Orbit (LEO) Environment

  • Kumar, Sarath Kumar Sathish;Ankem, Venkat Akhil;Kim, YunHo;Choi, Chunghyeon;Kim, Chun-Gon
    • Composites Research
    • /
    • v.31 no.3
    • /
    • pp.83-87
    • /
    • 2018
  • An object in the Low Earth Orbit (LEO) is affected by many environmental conditions unlike earth's surface such as, Atomic oxygen (AO), Ultraviolet Radiation (UV), thermal cycling, High Vacuum and Micrometeoroids and Orbital Debris (MMOD) impacts. The effect of all these parameters have to be carefully considered when designing a space structure, as it could be very critical for a space mission. Polybenzimidazole (PBI) is a high performance thermoplastic polymer that could be a suitable material for space missions because of its excellent resistance to these environmental factors. A thin coating of PBI polymer on the carbon epoxy composite laminate (referred as CFRP) was found to improve the energy absorption capability of the laminate in event of a hypervelocity impact. However, the overall efficiency of the shield also depends on other factors like placement and orientation of the laminates, standoff distances and the number of shielding layers. This paper studies the effectiveness of using a PBI coating on the front bumper in a multi-shock shield design for enhanced hypervelocity impact resistance. A thin PBI coating of 43 micron was observed to improve the shielding efficiency of the CFRP laminate by 22.06% when exposed to LEO environment conditions in a simulation chamber. To study the effectiveness of PBI coating in a hypervelocity impact situation, experiments were conducted on the CFRP and the PBI coated CFRP laminates with projectile velocities between 2.2 to 3.2 km/s. It was observed that the mass loss of the CFRP laminates decreased 7% when coated by a thin layer of PBI. However, the study of mass loss and damage area on a witness plate showed CFRP case to have better shielding efficiency than PBI coated CFRP laminate case. Therefore, it is recommended that PBI coating on the front bumper is not so effective in improving the overall hypervelocity impact resistance of the space structure.

Comparison in Structural Characteristics and Phenanthrene Sorption of Molecular Size-Fractionated Humic Acids (분자량 크기별 토양 휴믹산(HA)의 구조적 특성 및 페난트렌 흡착 반응특성 비교)

  • Lee, Doo-Hee;Kim, So-Hui;Shin, Hyun-Sang
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.7
    • /
    • pp.70-79
    • /
    • 2015
  • A sample of soil humic acid (HA) was divided by ultrafiltration (UF) into five fractions of different molecular size (UF1: > 300, UF2: 100~300, UF3: 30~100, UF4: 10~30, UF5: 1~10 kilodaltons). Apparent average molecular weight (Mw) of the HA fractions were measured using high performance size exclusion chromatography (HPSEC), and the chemical and structural properties of the five HA fractions were characterized by elemental compositions (H/C, O/C and w ((2O + 3NH)/ C)) and ultraviolet-visible absorption ratios (SUVA, A4/6). The organic carbon normalized-sorption coefficients (Koc) for the binding of phenanthrene to the HA fractions were determined by fluorescence quenching and relationship between the sorption coefficients and structural characteristics of the HA fractions were investigated. The elemental analysis and UV-vis spectral data indicated that the HA fractions with higher molecular weights have grater aliphatic character and lower contents of oxygen, while the HA fractions with lower molecular size have greater aromatic character and molecular polarity that correspond to greater SUVA and internal oxidation values (w). The log Koc values (L/kg C) were gradual increased from 4.45 for UF5 to 4.87 for UF1. The correlation study between the structural descriptors of the HA fractions and log Koc values of phenanthrene show that the magnitude of Koc values positively correlated with $M_w$ and H/C, while negatively correlated with the independent descriptors of the O/C, w, SUVA and A4/6.

Poly-4-vinylphenol and Poly (melamine-co-formaldehyde)-based Tungsten Diselenide (WSe2) Doping Method

  • Nam, Hyo-Jik;Park, Hyung-Youl;Park, Jin-Hong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.194.1-194.1
    • /
    • 2015
  • Transition metal dichalcogenide (TMD) with layered structure, has recently been considered as promising candidate for next-generation flexible electronic and optoelectronic devices because of its superior electrical, optical, and mechanical properties.[1] Scalability of thickness down to a monolayer and van der Waals expitaxial structure without surface dangling bonds (consequently, native oxides) make TMD-based thin film transistors (TFTs) that are immune to the short channel effect (SCE) and provide very high field effect mobility (${\sim}200cm^2/V-sec$ that is comparable to the universal mobility of Si), respectively.[2] In addition, an excellent photo-detector with a wide spectral range from ultraviolet (UV) to close infrared (IR) is achievable with using $WSe_2$, since its energy bandgap varies between 1.2 eV (bulk) and 1.8 eV (monolayer), depending on layer thickness.[3] However, one of the critical issues that hinders the successful integration of $WSe_2$ electronic and optoelectronic devices is the lack of a reliable and controllable doping method. Such a component is essential for inducing a shift in the Fermi level, which subsequently enables wide modulations of its electrical and optical properties. In this work, we demonstrate n-doping method for $WSe_2$ on poly-4-vinylphenol and poly (melamine-co-formaldehyde) (PVP/PMF) insulating layer and adjust the doping level of $WSe_2$ by controlling concentration of PMF in the PVP/PMF layer. We investigated the doping of $WSe_2$ by PVP/PMF layer in terms of electronic and optoelectronic devices using Raman spectroscopy, electrical measurements, and optical measurements.

  • PDF

Anti-aging Effect on Skin with the needles of red pine, Pinus densiflora (적송엽(赤松葉)이 피부(皮膚)의 노화(老化)에 미치는 영향(影響))

  • Park, Seong-Kyu;Lee, Jong-Chan;Ahn, Soo-Mi;Lee, Jin-Young;Kim, Youn-Joon;Hwang, Jae-Sung;Lee, Byeong-Gon;Chang, Ih-Seoup
    • The Korea Journal of Herbology
    • /
    • v.20 no.4
    • /
    • pp.1-10
    • /
    • 2005
  • Objectives : We investigated the anti-aging effect on skin with the extract of the needles of red pine, Pinus densiflora. Methods : We measured various effects related to skin such as the anti-oxidant effect, the protection against ultraviolet (UV) irradiation, the inhibition of reactive oxygen species (ROS) generation, the induction of heat shock protein 70 (HSP70), the reduction of matrix metalloproteinase-2 (MMP-2) synthesis and senescent cell. Results : The results were as follows : The extract of the needles of red pine (RP) had the potent anti-oxidant effect and the ROS scavenging effect. Also RP preserved the systemic anti-oxidant enzyme system (superoxide dismutase and catalase) from UVB irradiation. RP protected the cell membrane from the damages induced by UVB irradiation. RP induced HSP70, a mediator of resistance to UVB irradiation. RP reduced the synthesis of MMP-2 induced by UVB irradiation. And RP inhibited the amount of senescent-associated (SA) ${\beta}-galactosidase$ staining, as a marker of replicative senescence. Conclusions : The results of our study indicate that the extract of the needles of red pine, Pinus densiflora, has anti-aging effects on skin.

  • PDF

NEP-AKARI: EVOLUTION WITH REDSHIFT OF DUST ATTENUATION IN 8 ㎛ SELECTED GALAXIES

  • Buat, V.;Oi, N.;Burgarella, D.;Malek, K.;Matsuhara, H.;Murata, K.;Serjeant, S.;Takeuchi, T.T.;Malkan, M.;Pearson, C.;Wada, T.
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.257-261
    • /
    • 2017
  • We built a $8{\mu}m$ selected sample of galaxies in the NEP-AKARI field by defining 4 redshift bins with the four AKARI bands at 11, 15, 18 and 24 microns (0.15 < z < 0.49, 0.75 < z < 1.34, 1.34 < z < 1.7 and 1.7 < z < 2.05). Our sample contains 4079 sources, 599 are securely detected with Herschel/PACS. Also adding ultraviolet (UV) data from GALEX, we fit the spectral energy distributions using the physically motivated code CIGALE to extract the star formation rate, stellar mass, dust attenuation and the AGN contribution to the total infrared luminosity ($L_{IR}$). We discuss the impact of the adopted attenuation curve and that of the wavelength coverage to estimate these physical parameters. We focus on galaxies with a luminosity close the characteristic $L^*_{IR}$ in the different redshift bins to study the evolution with redshift of the dust attenuation in these galaxies.

The Effects of Edible Coating and Hurdle-Technology on Quality Maintenance and Shelf-Life Extension of Seafood (식용 코팅 및 허들기술이 수산물의 품질 유지와 저장성 연장에 미치는 영향)

  • Baek, Ji Hye;Lee, So-Young;Oh, Se-Wook
    • Journal of Food Hygiene and Safety
    • /
    • v.35 no.3
    • /
    • pp.205-212
    • /
    • 2020
  • Foodborne diseases occur frequently and have various being related to the intake of contaminated foods. Seafood products are susceptible to contamination due to higher water content and microorganisms, which combine to give them a short shelf-life. Various approaches have been applied to overcome this problem. Edible coatings that are also biodegradable and biocompatible have been discussed as one of the applicable solutions. These coatings can actually help to maintain seafood quality by inhibiting the growth of microorganisms and delaying the loss of moisture. This paper presents the effects of various natural bio-polymers, antimicrobial substances and physical sterilization techniques such as gamma irradiation, ultraviolet (UV) sterilization, and light-emitting diode (LED) sterilization on seafood coatings.

Ring Opening and Polymerization of Alpha-Lipoic Acid (알파 리포산의 개환 및 중합)

  • Park Chul-Ho;Kim Ae-Ran;Yun Hye-Lee;Lee Jong-Hwi
    • Polymer(Korea)
    • /
    • v.30 no.4
    • /
    • pp.357-361
    • /
    • 2006
  • Alpha-lipoic acid (ALA) synthesized in the body has virtues such as anti-oxidation, blood sugar regulation, appetite suppression, and anti-obesity, etc. ALA, which is also used as a drug, has a five-membered ring including disulfide and so easily losses bioavailability due to ring opening and subsequent polymerization by heat or ultraviolet. This report studies various conditions for ring opening polymerization. The ring opening starts above the melting point of ALA, but there was no temperature dependence above it. At $70^{\circ}C$, the degree of ring opening was proportional to reaction time and inversely proportional concentration. The degree of ring opening in acetic acid with UV for 1 hour reached the maximum conversion (70%). Most cleaved ALA changed into disulfide polymers, and the molecular weight of the polymers increased as the amount of ring opening increased.

NMR peak assignment for the elucidation of the solution structure of T4 Endonuclease V

  • Im, Hoo-Kang;Hyungmi Lihm;Yu, Jun-Suk;Lee, Bong-Jin
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1996.04a
    • /
    • pp.183-183
    • /
    • 1996
  • Bacteriophage T4 endonuclease V initiates the repair of ultraviolet (UV)-induced pyrimidine dimer photoproducts in duplex DNA. The mechanism of DNA strand cleavage involves four sequential stens: linear diffusion along dsDNA, pyrimidine dimer-specific binding,l pyrimidine dimer-DNA glycosylase activity, and Af lyase activity. Although crystal structure is known for this enzyme, solution structure has not been yet known. In order to elucidate the solution structure of this enzyme NMR spectroscopy was used. As a basis for the NMR peak assignment of the protein, HSQC spectrum was obtained on the uniformly $\^$15/N-labeled T4 endonuclease V. Each amide peak of the spectrum were classified according to amino acid spin systems by interpreting the spectrum of $\^$15/N amino acid-specific labeled T4 endonuclease V. The assignment was mainly obtained from three-dimensional NMR spectra such as 3D NOESY-HMQC, 3D TOCSY-HMQC. These experiments were carried out will uniformly $\^$15/N-labeled sample. In order to assign tile resonance of backbon atom, triple-resonance theree-dimensional NMR experiments were also performed using double labeled($\^$15/N$\^$13/C) sample. 3D HNCA, HN(CO)CA, HNCO, HN(CA)HA spectra were recorded for this purpose. The results of assignments were used to interpret the interaction of this enzyme with DNA. HSQC spectrum was obtained for T4 endonuclease V with specific $\^$15/N-labeled amino acids that have been known for important residue in catalysis. By comparing the spectrum of enzyme*DNA complex with that of the enzyme, we could confirm the important role of some residues of Thr, Arg, Tyr in activity. The results of assignments were also used to predict the secondary structure by chemical shift index (CSI).

  • PDF

Photocatalysis of o-, m- and p-Xylene Using Element-Enhanced Visible-Light Driven Titanium Dioxide

  • Kim, Jong-Tae;Kim, Mo-Keun;Jo, Wan-Kuen
    • Journal of Environmental Science International
    • /
    • v.17 no.11
    • /
    • pp.1195-1201
    • /
    • 2008
  • Enhancing with non-metallic elemental nitrogen(N) is one of several methods that have been proposed to modify the electronic properties of bulk titanium dioxide($TiO_2$), in order to make $TiO_2$ effective under visible-light irradiation. Accordingly, current study evaluated the feasibility of applying visible-light-induced $TiO_2$ enhanced with N element to cleanse aromatic compounds, focusing on xylene isomers at indoor air quality(IAQ) levels. The N-enhanced $TiO_2$ was prepared by applying two popular processes, and they were coated by applying two well-known methods. For three o-, m-, and p-xylene, the two coating methods exhibited different photocatalytic oxidation(PCO) efficiencies. Similarly, the two N-doping processes showed different PCO efficiencies. For all three stream flow rates(SFRs), the degradation efficiencies were similar between o-xylene and m,p-xylene. The degradation efficiencies of all target compounds increased as the SFR decreased. The degradation efficiencies determined via a PCO system with N-enhanced visible-light induced $TiO_2$ was somewhat lower than that with ultraviolet(UV)-light induced unmodified $TiO_2$, which was reported by previous studies. Nevertheless, it is noteworthy that PCO efficiencies increased up to 94% for o-xylene and 97% for the m,p-xylene under lower SFR(0.5 L $min^{-1}$). Consequently, it is suggested that with appropriate SFR conditions, the visible-light-assisted photocatalytic systems could also become important tools for improving IAQ.

Decomposition of Reactive Dyes by Catalytic Wet Air Oxidation Process(2) (촉매 습식산화에 의한 반응성 염료 분해(2))

  • Choi, Jang-Seung;Woo, Sung-Hoon;Park, Seung-Cho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.11
    • /
    • pp.2077-2083
    • /
    • 2000
  • For the application of wet air oxidation(WAO) process reactive dyes, remazol blacks has been selected as the subject for this study. The rate of decomposition relating to the reaction temperature and catalyst has been summarized during the catalytic wet air oxidation reaction. When 1.5 gram per liter of platinum is added titanium-dioxide and the partial pressure is adjusted to 6 atmosphere at the reaction temperature exceeding $200^{\circ}C$, more than 95% of the remazol blacks dyes were decomposed. When the reaction temperature was raised to $200^{\circ}C$, $220^{\circ}C$ and $250^{\circ}C$, respectively, for 240 minutes after adding the catalyst, the remaining rate of ultraviolet absorbance had dropped significantly to 18%, 12%, and 4%. At the reaction temperature of $250^{\circ}C$, color removal efficiency was approximately 95% or more after 120 minutes from the beginning of the reaction.

  • PDF