• Title/Summary/Keyword: ultrasonic system

Search Result 1,511, Processing Time 0.028 seconds

Optimization of Code Combination in Multi-Code Ultrasonic Sensors for Multi-Robot Systems (군집로봇을 위한 다중 코드 초음파센서의 코드조합 최적화)

  • Moon, Woo-Sung;Cho, Bong-Su;Baek, Kwang Ryul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.7
    • /
    • pp.614-619
    • /
    • 2013
  • In multi-robot systems, ultrasonic sensors are widely used for localization and/or obstacle detection. However, conventional ultrasonic sensors have a drawback, that is, the interference problem among ultrasonic transmitters. There are some previous studies to avoid interferences, such as TDMA (Time Division Multiple Access) and CDMA (Code Division Multiple Access). In multiple autonomous mobile robots systems, the Doppler-effect has to be considered because ultrasonic transceivers are attached to the moving robots. To overcome this problem, we find out the ASK (Amplitude Shift Keying)-CDMA technique is more robust to the Doppler-effect than the BPSK (Binary Phase Shift Keying)-CDMA technique. In this paper, we propose a new code-expression method and a Monte-Carlo based algorithm that optimizes the ultrasonic code combination in the ASK-CDMA ultrasonic system. The experimental results show that the proposed algorithm improves the performance of the ultrasonic multiple accessing capacity in the ASK-CDMA ultrasonic system.

Sonochemical Effects using Multi-stepped Ultrasonic Horn (다단 혼 형태의 초음파 장비를 이용한 초음파 화학적 효과 연구)

  • Choi, Jongbok;Lee, Seongeun;Son, Younggyu
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.4
    • /
    • pp.58-66
    • /
    • 2020
  • Since the typical horn-type ultrasonic equipment induces a reaction at the probe tip, the sonochemical reaction has a limitation that it occurs only in a specific area. As one of the ways to overcome this limitation, an ultrasonic device with multi-stepped horn equipped with several oscillators has been developed. The objective of this study was to investigate the sonochemical effects induced by acoustic cavitation system in 20 kHz multi-stepped ultrasonic horn using calorimetry, KI dosimetry and the luminol test. The sonochemical effects of multi-stepped ultrasonic horn were compared with that of the typical horn-type 20 kHz ultrasonic device. The effect of immersion depth and power on the sonochemical reaction was investigated in the ultrasonic system with multi-stepped ultrasonic horn. Higher calorimetric energy was obtained at higher immersion depth and power conditions. Sonochemical effects increased significantly when using the high immersion depth and input power. However, as the input power increased, the cavitation reaction zone concentrated around the ultrasonic horn. Additionally, the experiments to examine the effect of liquid temperature was conducted. The smaller sonochemical reaction was obtained for the higher liquid temperature. The effect on temperature seems to be closely related to liquid conditions such as viscosity and vapor pressure of water.

An Integrated Navigation System Combining INS and Ultrasonic-Speedometer to Overcome GPS-denied Area (GPS 음영 지역 극복을 위한 INS/초음파 속도계 결합 항법 시스템 설계)

  • Choi, Bu-Sung;Yoo, Won-Jae;Kim, La-Woo;Lee, Yu-Dam;Lee, Hyung-Keun
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.3
    • /
    • pp.228-236
    • /
    • 2019
  • Recently, multi-sensor integration techniques have been actively studied to obtain reliable and accurate navigation solution in GPS (Global Positioning System)-denied harsh environments such as urban canyons, tunnels, and underground roads. In this paper, we propose a low-cost ultrasonic-speedometer utilizing the characteristics of the ultrasonic propagation. An efficient integrated INS (inertial navigation system)/ultrasonic-speedometer navigation system is also proposed to improve the accuracy of positioning in GPS-denied environments. To evaluate the proposed system, car experiments with field-collected measurements were performed. By the experiment results, it was confirmed that the proposed INS/ultrasonic-speedometer system bounds the positioning error growth effectively even though GPS signal is blocked more than 10 seconds and a low-cost MEMS IMU (micro electro mechanical systems inertial measurement unit) is utilized.

Development of Ultrasonic-Optical Fiber Sensor and its Applications (초음파-광섬유 센서의 개발과 그 응용)

  • Oh, Il-Kwon;Lim, Seung-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.169-174
    • /
    • 2006
  • The outstanding mechanical property of optical fiber and the merits of acoustic emission sensing technique are unified for novel sensor system. The generated ultrasonic wave from piezoelectric generator are propagated along the optical fiber and also sensed. The propagated wave can be influence by external pressure on the optical fiber or environmental circumstance. The optical fiber sensor using ultrasonic wave has advantages compare with existing sensor system. In this study, the sensitivity of the optical fiber sensor is experimentally investigated. As the applications of the optical fiber sensor system using piezoelectric ultrasonic waves, the point load on the optical fiber is measured and the monitoring system for the void fraction of two phase flows is developed. The experimental results show the linear relationship between sensed voltage and void fraction.

  • PDF

A Study for Path Tracking of Vehicle Robot Using Ultrasonic Positioning System (초음파 위치 센서를 이용한 차량 로봇의 경로 추종에 관한 연구)

  • Yoon, Suk-Min;Yeu, Tae-Kyeong;Park, Soung-Jea;Hong, Sup;Kim, Sang-Bong
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.795-800
    • /
    • 2008
  • The paper presents research for the established experiment environment of multi vehicle robot, localization algorithm that is based on vehicle control, and path tracking. The established experiment environment consists of ultrasonic positioning system, vehicle robot, server and wireless module. Ultrasonic positioning system measures positioning for using ultrasonic sensor and generates many errors because of the influence of environment such as a reflection of wall. For a solution of this fact, localization algorithm is proposed to determine a location using vehicle kinematics and selection of a reliable location data. And path tracking algorithm is proposed to apply localization algorithm and LOS, finally, that algorithms are verified via simulation and experimental

  • PDF

A study on the Pollution Emissions of the Ultrasonic Fuel Feeding System in Gasoline Injection Vehicle (초음파 연료공급장치용 가솔린 분사식 자동차의 저공해화 연구)

  • 최관호;김봉석;류정인
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.1
    • /
    • pp.86-95
    • /
    • 1996
  • This study was on the pollution emissions of the Ultrasonic fuel feeding system in gasoline injection vehicle. This work measured th SMD of the fuel, and compared the characteristics through chassis dynamometer and highway road test by the conventional vehicle. And this work measured vacuum degree, turbulence intensity and the rate of fuel consumption according to intake air velocity with swirler. The results are as followed; The effects of the vehicle installed the ultrasonic fuel feeding system are better than those of the conventional vehicle.

  • PDF

A Study on the Detection Algorithm of an Advanced Ultrasonic Signal for Hydro-acoustic Releaser

  • Kim, Young-Jin;Huh, Kyung-Moo;Cho, Young-June
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.5
    • /
    • pp.767-775
    • /
    • 2008
  • Methods used for exploring marine resources and spaces include positioning a probe under water and then recalling it after a specified time. Hydro-acoustic Releasers are commonly used for positioning and retrieving of such exploration equipment. The most important factor in this kind of system is the reliability for recalling the instruments. The frequently used ultrasonic signal detection method can detect ultrasonic signals using a fixed comparator, but because of increased rates of errors due to outside interferences, information is repetitively acquired. This study presents an effective ultrasonic signal detection algorithm using the characteristics of a resonance and adaptive comparator Combined with the FSK+ASK modulator. As a result, approximately 8.8% of ultrasonic wave communication errors caused by background noise and transmission losses were reduced for effectively detecting ultrasonic waves. Furthermore, the resonance circuit's quality factor was enhanced (Q = 120 to 160). As such, the bias voltage of the transistor (Vb= 3.3 to 6.8V) was increased thereby enhancing the frequency's selectivity.

Development of Ultrasonic Active Fiber Sensor for Structural Health Monitoring (구조물 안전진단을 위한 초음파능동형광섬유 센서의 개발)

  • Lim, Seung-Hyun;Lee, Jung-Ryul;Oh, Il-Kwon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.747-752
    • /
    • 2008
  • Fiber-guided sensor system using a generator and a receiver can detect the amplitude of load or pressure. However, this type of sensor can show some difficulties in detecting the location of damages and pressure loadings. To overcome this weakness of this type, the ultrasonic active fiber sensor, which has an integrated ultrasonic generator and sensing part, was developed in this study. By using this sensor system, the location of mechanical loads can be exactly detected. Moreover, the ultrasonic active fiber sensor is more cost-effective than an ultrasonic fiber sensor using two piezoelectric transducers which are used as a generator and a receiver, respectively. Two applications of the ultrasonic active fiber sensor are demonstrated: cure monitoring of lead and measurement of liquid level. Present results showed that the active fiber sensor can be applied for various environmental sensing.

  • PDF

PDFF Controller Design by CDM for Position Control of Traveling-Wave Ultrasonic Motor

  • Nundrakwang, S.;Isarakorn, D.;Benjanarasuth, T.;Ngamwiwit, J.;Komine, N.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1847-1852
    • /
    • 2003
  • Ultrasonic motors have many excellent performances. A variety of ultrasonic motors has been developed and used as an actuator in motion control systems. However, this motor has nonlinear characteristics. Therefore, it is difficult to achieve the precise position control system incorporating with the ultrasonic motor. This paper describes a position control scheme for traveling-wave type ultrasonic motor using a pseudo-derivative control with feedforward gains (PDFF) controller designed by the coefficient diagram method (CDM). The PDFF control system satisfies both the tracking and regulation performances, which are the most important for the precise position control system. The CDM is shown to be an efficient and simple method to design the parameters of PDFF controller. The effectiveness of the proposed control system is demonstrated by experiments.

  • PDF

FPGA-based design and implementation of data acquisition and real-time processing for laser ultrasound propagation

  • Abbas, Syed Haider;Lee, Jung-Ryul;Kim, Zaeill
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.4
    • /
    • pp.467-475
    • /
    • 2016
  • Ultrasonic propagation imaging (UPI) has shown great potential for detection of impairments in complex structures and can be used in wide range of non-destructive evaluation and structural health monitoring applications. The software implementation of such algorithms showed a tendency in time-consumption with increment in scan area because the processor shares its resources with a number of programs running at the same time. This issue was addressed by using field programmable gate arrays (FPGA) that is a dedicated processing solution and used for high speed signal processing algorithms. For this purpose, we need an independent and flexible block of logic which can be used with continuously evolvable hardware based on FPGA. In this paper, we developed an FPGA-based ultrasonic propagation imaging system, where FPGA functions for both data acquisition system and real-time ultrasonic signal processing. The developed UPI system using FPGA board provides better cost-effectiveness and resolution than digitizers, and much faster signal processing time than CPU which was tested using basic ultrasonic propagation algorithms such as ultrasonic wave propagation imaging and multi-directional adjacent wave subtraction. Finally, a comparison of results for processing time between a CPU-based UPI system and the novel FPGA-based system were presented to justify the objective of this research.