• Title/Summary/Keyword: ultrasonic sensor

Search Result 844, Processing Time 0.03 seconds

Abdominal Wall Motion-Based Respiration Rate Measurement using An Ultrasonic Proximity Sensor (복부 움직임에 따른 초음파 근접센서를 이용한 호흡측정에 관한 연구)

  • Min, Se-Dong;Kim, Jin-Kwon;Shin, Hang-Sik;Yun, Young-Hyun;Lee, Chung-Keun;Lee, Jeong-Whan;Lee, Myoung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.2071-2078
    • /
    • 2009
  • In this paper, we proposed a non-contact respiration measurement system with ultrasonic proximity sensor. Ultrasonic proximity sensor approach of respiration measurement which respiration signatures and rates can be derived in real-time for long-term monitoring is presented. 240 kHz ultrasonic sensor has been applied for the proposed measurement system. The time of flight of sound wave between the transmitted signal and received signal have been used for a respiration measurement from abdominal area. Respiration rates measured with the ultrasonic proximity sensor were compared with those measured with standard techniques on 5 human subjects. Accurate measurement of respiration rate is shown from the 50 cm measurement distance. The data from the method comparison study is used to confirm the performance of the proposed measurement system. The current version of respiratory rate detection system using ultrasonic can successfully measure respiration rate. The proposed measurement method could be used for monitoring unconscious persons from a relatively close range, avoiding the need to apply electrodes or other sensors in the correct position and to wire the subject to the monitor. Monitoring respiration using ultrasonic sensor offers a promising possibility of non-contact measurement of respiration rates. Especially, this technology offers a potentially inexpensive implementation that could extend applications to consumer home-healthcare and mobile-healthcare products. Further advances in the sensor design, system design and signal processing can increase the range of the measurement and quality of the rate-finding for broadening the potential application areas of this technology.

Ultrasonic Sensor System using Neuro-Fuzzy Algorithm for Improvement of Pattern Recognition Rate (초음파센서 뉴로퍼지 시스템을 이용한 패턴인식률 개선)

  • Na, Cheolhun;Choi, Kwangseok;Boo, Suil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.721-724
    • /
    • 2014
  • Ultrasonic sensor is used widely for many applications because low cost, simple structure, and low restriction. There are many difficulties to recognize an object by use an ultrasonic sensor, because of low resolution, poor direction, and measurement error. To improve the these problem, we use the various kinds of sensor arrangement methods, large amount of sensor, and change the arrangement pattern of sensor. In this paper, to obtain the most basic parameters for pattern recognition such as distance, dimension of the object, an angle of the object, we get the improved results by use the intelligent calculation algorithm based on Neuro-Fuzzy. This method use the multifarious output voltage of ultrasonic sensor by simple electronic circuit.

  • PDF

Model-based map building for localization of an autonomous mobile robot using an ultrasonic sensor (초음파 센서를 이용한 자율 주행 로봇의 위치 보정용 모델 기반 지도 작성)

  • 이신제;오영선;김학일;김춘우
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1132-1135
    • /
    • 1996
  • The objective of this paper is to make a model-based map for the localization of an autonomous mobile robot(AMR) from ultrasonic sensor measurements, that are acquired when the AMR explores unknown indoors. First, the AMR navigates on unknown space by wall-following and gathers range data from the ultrasonic sensor. Then, the range data are converted to a wall-marked gird map, from which lines representing the walls are extracted using the Hough transform. This process is implemented on an AMR having an ultrasonic sensor, and a preliminary experimental result is presented.

  • PDF

A Sensitivity Measurement of Ultrasonic Signals by PZT Sensor (PZT 센서를 이용한 초음파 신호 감도측정)

  • 최인혁;권동진;윤장완;정길조
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.403-405
    • /
    • 1999
  • Power transformers have a tendency of ultra-high voltage and huge capacity as power demand increases day after day. Therefore, the fault by insulation destruction gives rise to large area of power failure in huge capacity transformers. On-line predictive diagnostics is very important In power transformers because of economic loss and its spreading effect. Hence, this study presents experiments of partial discharge method using ultrasonic sensor in order to confirm the possibility of ultrasonic sensor in power transformers. It carries out the experiments of measuring delay time between ultrasonic sensor and transducer, sensitiities by temperature change of oil and by barriers inside transformers. It is also Included wave analysis by ultrasonic sensor for needle-plate electrode powered on through high-voltage equipments.

  • PDF

Environmental Perception Considering Beam Opening Angle and Specular Reflection of Ultrasonic Sensors (초음파센서의 지향성 및 경면반사현상을 고려한 환경인식)

  • Ha, Yun-Su;Kim, Duck-Gon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.8
    • /
    • pp.919-926
    • /
    • 2006
  • To move in unknown or uncertain environment, a mobile robot must collect informations from various sensors and use it to construct a representation of the external world. Ultrasonic sensor can provide range data for this purpose in a simple cost-effective way. However conventional ultrasonic sensor system for a mobile robot are not sufficient for environment recognition because of their large beam opening angle, specular reflection. This paper describe on environmental perception algorithm which can solve these problems in case using ultrasonic sensor. The algorithm consist of two parts. One is to solve beam opening angle problem by fusion from multiple ultrasonic sensors. The other is to cope with specular reflection problem in wall line extract, which is based on Hough Transform. Experiments to verify the validity of the proposed algorithm are carried out, and the results are provided at last part in this paper.

Simultaneous and Coded Driving System of Ultrasonic Sensor Array for Object Recognition in Autonomous Mobile Robots

  • Kim, Ch-S.;Choi, B.J.;Park, S.H.;Lee, Y.J.;Lee, S.R.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2519-2523
    • /
    • 2003
  • Ultrasonic sensors are widely used in mobile robot applications to recognize external environments, because they are cheap, easy to use, and robust under varying lighting conditions. In most cases, a single ultrasonic sensor is used to measure the distance to an object based on time-of-flight (TOF) information, whereas multiple sensors are used to recognize the shape of an object, such as a corner, plane, or edge. However, the conventional sequential driving technique involves a long measurement time. This problem can be resolved by pulse coding ultrasonic signals, which allows multi-sensors to be fired simultaneously and adjacent objects to be distinguished. Accordingly, the current presents a new simultaneous coded driving system for an ultrasonic sensor array for object recognition in autonomous mobile robots. The proposed system is designed and implemented using a DSP and FPGA. A micro-controller board is made using a DSP, Polaroid 6500 ranging modules are modified for firing the coded signals, and a 5-channel coded signal generating board is made using a FPGA. To verify the proposed method, experiments were conducted in an environment with overlapping signals, and the flight distances for each sensor were obtained from the received overlapping signals using correlations and conversion to a bipolar PCM-NRZ signal.

  • PDF

Comparative Analysis on Performance Indices of Obstacle Detection for an Overlapped Ultrasonic Sensor Ring (중첩 초음파 센서 링의 장애물 탐지 성능 지표 비교 분석)

  • Kim, Sung-Bok;Kim, Hyun-Bin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.4
    • /
    • pp.321-327
    • /
    • 2012
  • This paper presents a comparative analysis on three different types of performance indices of obstacle detection for an overlapped ultrasonic sensor ring. Due to beam overlap, the entire sensing zone of each ultrasonic sensor can be divided into three smaller sensing subzones, which leads to significant reduction of positional uncertainty in obstacle detection. First, the positional uncertainty in obstacle detection is expressed in terms of the area of a sensing subzone, and type 1 performance index is then defined as the area ratio of side and center sensing subzones. Second, based on the area of a sensing subzone, type 2 performance index is defined taking into account the size of the entire range of obstacle detection as well as the degree of the positional uncertainty in obstacle detection. Third, the positional uncertainty in obstacle detection is now expressed in terms of the length of the uncertainty arc spanning a sensing subzone, and type 3 performance index is then defined as the average value of the uncertainty arc lengths over the entire range of obstacle detection. Fourth, using a commercial low directivity ultrasonic sensor, the changes of three different performance indices depending on the parameter of an overlapped ultrasonic sensor ring are examined and compared.

Depth calibration method of SWASH vessel using its position and ultrasonic sensor (SWASH형 시험선의 자세 및 초음파센서를 이용한 심도 보정 방법)

  • Hwang, Heesung;Cha, Jeongmin;You, Youngjoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.1140-1141
    • /
    • 2017
  • Depth of SWASH(Small Waterplane Area Single Hull) vessel which is an input value of its control system is measured by ultrasonic sensor. Distance to the its center of gravity can be simply calculated through ultrasonic sensor attached to the front of the vessel from the known values. However, it is to be calibrated with respect to its position for the accurate depth because it has geometric relation between the measurement value of ultrasonic sensor and the depth. In this research, depth calibration method of SWASH vessel using its position and ultrasonic sensor is introduced.

  • PDF

Gas Tank Microleakage Reception Characteristics According to Thickness of the First Matching Layer of Ultrasonic Sensor (초음파 센서의 1차 정합층 두께에 따른 가스탱크 미세누설 수신특성)

  • Seo, Wonjun;Son, Seongjin;Im, Seokyeon
    • Tribology and Lubricants
    • /
    • v.37 no.5
    • /
    • pp.164-171
    • /
    • 2021
  • Ultrasonic sensors show various reception characteristics based on the density of the measurement medium; hence, they are used in various fields to benefit from the characteristics of ultrasonic signals. In this study, the reception characteristics according to the thickness of the first matching layer are compared and analyzed for application to gas tank microleak detection. Accordingly, three types of sensors are manufactured with varying thicknesses of the first matching layer, namely 4.8 mm, 5.1 mm, and 5.5 mm; further, a direct measurement method is used wherein the sensor is attached to the inside of the chamber. Experiments are conducted to observe the phase change due to microleakage, which is the most linear in the sensor with the 4.8 mm thick first matching layer. This is assumed to be the result of stable signal transmission and reception with little phase deviations over time because the first matching layer is closest to the ultrasonic wavelength. The other sensors show nonlinear results with increasing thickness of the first matching layer. Through this study, it is found that appropriately selecting the thickness of the first matching layer of the ultrasonic sensor can greatly influence sensor reliability.

Cylindrical Object Recognition using Sensor Data Fusion (센서데이터 융합을 이용한 원주형 물체인식)

  • Kim, Dong-Gi;Yun, Gwang-Ik;Yun, Ji-Seop;Gang, Lee-Seok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.8
    • /
    • pp.656-663
    • /
    • 2001
  • This paper presents a sensor fusion method to recognize a cylindrical object a CCD camera, a laser slit beam and ultrasonic sensors on a pan/tilt device. For object recognition with a vision sensor, an active light source projects a stripe pattern of light on the object surface. The 2D image data are transformed into 3D data using the geometry between the camera and the laser slit beam. The ultrasonic sensor uses an ultrasonic transducer array mounted in horizontal direction on the pan/tilt device. The time of flight is estimated by finding the maximum correlation between the received ultrasonic pulse and a set of stored templates - also called a matched filter. The distance of flight is calculated by simply multiplying the time of flight by the speed of sound and the maximum amplitude of the filtered signal is used to determine the face angle to the object. To determine the position and the radius of cylindrical objects, we use a statistical sensor fusion. Experimental results show that the fused data increase the reliability for the object recognition.

  • PDF