• Title/Summary/Keyword: ultrasonic sensing

Search Result 135, Processing Time 0.029 seconds

Self Localization of Mobile Robot Using Sonar Sensing and Map Building

  • Kim, Ji-Min;Lee, Ki-Seong;Jeong, Tae-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1931-1935
    • /
    • 2004
  • A location estimate problem is critical issues for mobile robot. Because it is basic problem in practical use of the mobile robot which do what, or move where, or reach an aim. Already there are many technologies of robot localization (like GPS, vision, sonar sensor, etc) used on development. But the elevation of accurateness was brought the problem that must consider an increase of a hardware cost and addition electric power in each ways. There is the core in question to develop available and accurate sensing algorithm though it is economical. We used a ultrasonic sensor and was going to implement comparatively accurate localization though economical. Using a sensing data, we could make a grid map and estimate a position of a mobile robot. In this paper, to get a satisfactory answer about this problem using a ultrasonic sensor.

  • PDF

An anisotropic ultrasonic transducer for Lamb wave applications

  • Zhou, Wensong;Li, Hui;Yuan, Fuh-Gwo
    • Smart Structures and Systems
    • /
    • v.17 no.6
    • /
    • pp.1055-1065
    • /
    • 2016
  • An anisotropic ultrasonic transducer is proposed for Lamb wave applications, such as passive damage or impact localization based on ultrasonic guided wave theory. This transducer is made from a PMNPT single crystal, and has different piezoelectric coefficients $d_{31}$ and $d_{32}$, which are the same for the conventional piezoelectric materials, such as Lead zirconate titanate (PZT). Different piezoelectric coefficients result in directionality of guided wave generated by this transducer, in other words, it is an anisotropic ultrasonic transducer. And thus, it has different sensitivity in comparison with conventional ultrasonic transducer. The anisotropic one can provide more information related to the direction when it is used as sensors. This paper first shows its detailed properties, including analytical formulae and finite elements simulations. Then, its application is described.

Optimal Design of Overlapped Ultrasonic Sensor Ring for High Resolution Obstacle Detection (고분해능 장애물 탐지를 위한 중첩 초음파 센서 링의 최적 설계)

  • Kim, Sung-Bok;Kim, Hyun-Bin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.2
    • /
    • pp.79-87
    • /
    • 2011
  • This paper presents the optimal design of an overlapped ultrasonic sensor ring for high resolution obstacle detection of an autonomous mobile robot. It is assumed that a set of low directivity ultrasonic sensors of the same type are arranged along a circle of nonzero radius at a regular spacing with their beams overlapped. First, taking into account the dead angle region, the entire range of obstacle detection is determined with reference to the center of an overlapped ultrasonic sensor ring. Second, the optimal design index of an overlapped ultrasonic sensor ring is defined as the area closeness of three sensing subzones resulting from beam overlap. Third, the lower and upper bounds on the number of ultrasonic sensors are derived, which can guarantee minimal beam overlap and also avoid excessive beam overlap among adjacent ultrasonic sensors. Fourth, employing a commercial low directivity ultrasonic sensor, an optimal design example of an overlapped ultrasonic sensor ring is given along with the ultrasonic sensor ring prototype mounted on top of a mobile robot. Finally, some experimental results using our prototype ultrasonic sensor ring are given to demonstrate the validity and performance of an optimally overlapped ultrasonic sensor ring for high resolution obstacle detection.

A Research on Object Detection Technology for the Visually Impaired (시각장애인을 위한 사물 감지 기술 연구)

  • Jeong, Yeon-Kyu;Kim, Byung-Gyu;Lee, Jeong-Bae
    • The KIPS Transactions:PartB
    • /
    • v.19B no.4
    • /
    • pp.225-230
    • /
    • 2012
  • In this paper, a blind person using a white cane as an adjunct of the things available sensing technology has been implemented. Sensing technology to implement things ultrasonic sensors and a webcam was used to process the data from the server computer. Ultrasonic sensors detect objects within 4meter people distinguish between those things that if the results based on the results will sound off. In this study, ultrasonic sensors, object recognition and human perception with the introduction of techniques and technologies developed for detecting objects in the lives of the visually impaired is expected to be greater usability.

Development of Ultrasonic Wave Propagation Imaging System

  • Chia, Chen-Ciang;Lee, Jung-Ryul;Kim, Jong-Heon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.4
    • /
    • pp.283-292
    • /
    • 2009
  • Laser-based ultrasonic sensing requires the probe with fixed fecal length, but this requirement is not essential in laser-based ultrasonic generation. Based on this fact, we designed a pulsed laser-based ultrasonic wave propagation imaging (UWPI) system with a tilting mirror system for rapid scanning of target, and an in-line band-pass filtering capable of ultrasoaic mode selection. 1D-temporal averaging, 2D-spatial averaging, and 3D-data structure building algorithms were developed far clearer results allowing fur higher damage detectability. The imaging results on a flat stainless steel plate were presented in movie and snapshot formats which showed the propagation of ultrasound visible as a concentric wavefield emerging from the location of an ultrasonic sensor. A hole in the plate with a diameter of 1 mm was indicated by the scattering wavefields. The results showed that this robust UWPI system is independent of focal length and reference data requirements.

Ultrasonic wireless sensor development for online fatigue crack detection and failure warning

  • Yang, Suyoung;Jung, Jinhwan;Liu, Peipei;Lim, Hyung Jin;Yi, Yung;Sohn, Hoon;Bae, In-hwan
    • Structural Engineering and Mechanics
    • /
    • v.69 no.4
    • /
    • pp.407-416
    • /
    • 2019
  • This paper develops a wireless sensor for online fatigue crack detection and failure warning based on crack-induced nonlinear ultrasonic modulation. The wireless sensor consists of packaged piezoelectric (PZT) module, an excitation/sensing module, a data acquisition/processing module, a wireless communication module, and a power supply module. The packaged PZT and the excitation/sensing module generate ultrasonic waves on a structure and capture the response. Based on nonlinear ultrasonic modulation created by a crack, the data acquisition/processing module periodically performs fatigue crack diagnosis and provides failure warning if a component failure is imminent. The outcomes are transmitted to a base through the wireless communication module where two-levels duty cycling media access control (MAC) is implemented. The uniqueness of the paper lies in that 1) the proposed wireless sensor is developed specifically for online fatigue crack detection and failure warning, 2) failure warning as well as crack diagnosis are provided based on crack-induced nonlinear ultrasonic modulation, 3) event-driven operation of the sensor, considering rare extreme events such as earthquakes, is made possible with a power minimization strategy, and 4) the applicability of the wireless sensor to steel welded members is examined through field and laboratory tests. A fatigue crack on a steel welded specimen was successfully detected when the overall width of the crack was around $30{\mu}m$, and a failure warnings were provided when about 97.6% of the remaining useful fatigue lives were reached. Four wireless sensors were deployed on Yeongjong Grand Bridge in Souht Korea. The wireless sensor consumed 282.95 J for 3 weeks, and the processed results on the sensor were transmitted up to 20 m with over 90% success rate.

Development of Ultrasonic-Optical Fiber Sensor and its Applications (초음파-광섬유 센서의 개발과 그 응용)

  • Oh, Il-Kwon;Lim, Seung-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.169-174
    • /
    • 2006
  • The outstanding mechanical property of optical fiber and the merits of acoustic emission sensing technique are unified for novel sensor system. The generated ultrasonic wave from piezoelectric generator are propagated along the optical fiber and also sensed. The propagated wave can be influence by external pressure on the optical fiber or environmental circumstance. The optical fiber sensor using ultrasonic wave has advantages compare with existing sensor system. In this study, the sensitivity of the optical fiber sensor is experimentally investigated. As the applications of the optical fiber sensor system using piezoelectric ultrasonic waves, the point load on the optical fiber is measured and the monitoring system for the void fraction of two phase flows is developed. The experimental results show the linear relationship between sensed voltage and void fraction.

  • PDF

A Study on Ultrasonic Location in Underwater Using the Two Optical Fiber Sensors (수중에서 2개의 광섬유센서를 이용한 초음파 음원의 위치 검출에 관한 연구)

  • Kwon, Tae-Ho;Shin, Dae-Yong;Lee, June-Ho;Lee, Jong-Kil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.62-66
    • /
    • 2002
  • The preliminary results on the application of optical fiber sensor(OFS) for locations of ultrasonic signals in underwater are presented and analyzed. The OFS utilizing the principle of Sagnac interferometry was designed and the hollowed cylindrical mandrel wound by single mode optical fiber was used as sensing component. The ultrasonic signal source was simulated by the PZT actuator operated with function generator. It has been shown that the OFS could detect the signals less affected by ultrasonic path comparing to conventional acousto-electric sensor and accurate location of ultrasonic signal could be carried out using two OFSs.

  • PDF

A Study on Damage Evaluation of Bearings for Rotating Machinery in Power Plant Using Ultrasonic Wave (초음파를 이용한 발전용 회전기기 베어링 손상상태 평가 연구)

  • Lee, Sang-Guk;Lee, Sun-Ki;Lee, Do-Hwan;Park, Sung-Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.7
    • /
    • pp.583-589
    • /
    • 2008
  • For the purpose of monitoring by ultrasonic test of the ball bearing conditions in rotating machinery, a system for their diagnosis was developed. ultrasonic technique is used to detect abnormal conditions in the bearing system. And various data such as frequency spectrum, energy and amplitude of ultrasonic signals, and ultrasonic parameters were acquired during experiments with the simulated ball bearing system. Based on the above results and practical application for power plant, algorithms and judgement criteria for diagnosis system was established. Bearing diagnosis system is composed of four parts as follows : sensing part for ultrasonic sensor and preamplifier, signal processing part for measuring frequency spectrum, energy and amplitude, interface part for connecting ultrasonic signal to PC using A/D converter, graphic display and software part for display of bearing condition and for managing of diagnosis program.