• Title/Summary/Keyword: ultrasonic pulse wave

Search Result 128, Processing Time 0.022 seconds

SH-EMAT에 의한 Digital 신호처리에 관한 연구

  • 김재열;박환규;조영태;김형일
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.04b
    • /
    • pp.198-203
    • /
    • 1993
  • In this study, byusing EMAT(Electro Magnetic Acoustic Transducer) the artificial slit is installed on 12B-SUS pipe test piece. By mading 4 cycle SH-bust wave (EMA) incidence to 45 .deg. angle, the signaldata of pulse, which is recevied from EMAT translated intodigital-signal-processing-method SSP and Deconvolution method by using FACOM. Results of these indicated that (1) this method of this study shows exellent result more than Ultrasonic testing method; (2) noise is well removed by SSP using signal dataa and resolving power and S/N ratio are advanced; (3) regradless of Ultrasonic wave, whichhas properties of generalstainless steel is generated into multiscattering and reflection phenomena, the resolving power of more than two times is progressed by being translated into Decon-volution method; and (4) as addition-averaging-processing number is increaing, the resolving power and S/N ratio are improved and the satisfactory signal is obtained.

Estimation of Hysteretic Interfacial Stiffness of Contact Surfaces

  • Kim, Nohyu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.3
    • /
    • pp.276-282
    • /
    • 2013
  • This paper proposes an ultrasonic method for measurement of linear and hysteretic interfacial stiffness of contacting surfaces between two steel plates subjected to nominal compression pressure. Interfacial stiffness was evaluated by the reflection and transmission coefficients obtained from three consecutive reflection waves from solid-solid surface using the shear wave. A nonlinear hysteretic spring model was proposed and used to define the quantitative interfacial stiffness of interface with the reflection and transmission coefficients. Acoustic model for 1-D wave propagation across interfaces is developed to formulate the reflection and transmission waves and to determine the linear and nonlinear hysteretic interfacial stiffness. Two identical plates are put together to form a contacting surface and pressed by bolt-fastening to measure interfacial stiffness at different states of contact pressure. It is found from experiment that the linear and hysteretic interfacial stiffness are successfully determined by the reflection and transmission coefficient at the contact surfaces through ultrasonic pulse-echo measurement.

Ultrasonic Characterization of Fluid Mud: Effect of Temperature (부유퇴적물의 초음파 특징: 온도의 효과)

  • Kim, Gil-Young;Kim, Dae-Choul;Kim, Jeong-Chang
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.4E
    • /
    • pp.140-145
    • /
    • 2004
  • A laboratory study was carried out to investigate the change of ultrasonic velocity as a function of temperature for fluid mud (i.e., suspension). Pulse transmission technique with ultrasonic wave was used for ultrasonic velocity measurement. The five samples for fluid mud were prepared for concentration range of $30.6{\%}\;(1.24\;g/cm^{3}\;in\;density),\;23.3{\%}\;(1.19\;g/cm^{3}),\;11.5{\%}(1.10\;g/cm^{3}),\;7.8{\%}\;(1.08\;g/cm^{3}),\;and\;3.8{\%}\;(1.05\;g/cm^{3})$ by weight. The ultrasonic velocity in fluid mud was investigated to increase $(approximately\;2.83\;to\;4.95\;m/s/^{\circ}C)$ with increasing temperature, due to the effect of viscosity and compressibility of water with changing temperature. But the increasing rate tends to decrease at temperature higher than $30^{\circ}C,$ caused by the effect of viscosity. The concentration of fluid mud more affect to the ultrasonic velocity at higher temperature range than that at lower temperature. Overall the temperature effect on the ultrasonic velocity in fluid mud was a similar rate as for distilled water and seawater, suggesting fluid mud significantly depends on the behavior of water.

Analysis of Ultrasonic Resonance Signal for Detecting the Defect of Adhesive Interface in Exit Cone (확대부 내열재의 접착계면 결함 검출을 위한 초음파 공진 신호 분석)

  • Kim, Dong-Ryun;Kim, Jae-Hoon;Lim, Soo-Yong;Park, Sung-Han;Yeh, Byung-Hahn
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.230-237
    • /
    • 2012
  • The ultrasonic resonance method was applied to detect the disbond interface and empty layer between steel and FRP of the exit cone. The ultrasonic resonance method can easily detect the disbond interface and empty layer by amplifying the ultrasonic signal, but pulse echo method is difficult to distinguish adhesive interface from disbond interface or empty layer. The resonance frequency was predicted using the pressure reflection coefficient of 3-layered medium, and measured from ultrasonic signal of the test block using Fast Fourier Transform. The ultrasonic resonance proved that the predicted resonance frequency was in good agreement with the measured resonance frequency.

  • PDF

Improving Wave Propagation Performance of an Ultrasonic Waveguide for Heat Isolation (열 차단용 초음파 도파관의 전파성능 향상 연구)

  • 최인석;전한용;김인수;김진오
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.7
    • /
    • pp.545-553
    • /
    • 2003
  • This paper is concerned with protecting piezoelectric transducers used in an ultrasonic flowmeter from the high temperature of hot fluid in a pipe by using a waveguide and with improving the propagation of ultrasonic longitudinal vibration in the waveguide. Waveguide material has been chosen for efficient insulation of heat transferred in the waveguide, and the minimum length of the waveguide for protecting piezoelectric transducer has been estimated. Forced response of the longitudinal vibration in a uniform circular rod has been obtained and the length of the waveguide has been selected for maximum amplitude. Longitudinal vibration response of a conically-tapered rod excited at a natural frequency has been obtained to confirm that wave motion is amplified as the cross-sectional size of the waveguide decreases along the axial direction. The fact that dispersion of a pulse wave in a waveguide is reduced as the cross-sectional radius is decreased has been examined theoretically and confirmed experimentally by using a single-rod waveguide. A bundle-type waveguide has proven to be a practical one through the evaluation of the wave propagation performance.

Application of Laser Ultrasonic Technique for Nondestructive Evaluation of Wall Thinning in Pipe (배관부 감육 손상의 비파괴 평가를 위한 레이저 초음파 기술 적용)

  • Hong, Kyung-Min;Kang, Young-June;Park, Nak-Kyu;Yoon, Suk-Bum
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.4
    • /
    • pp.361-367
    • /
    • 2013
  • Many of the nuclear power plant pipe is used in high temperature and high pressure environment. Wall thinning frequently caused by the corrosion. These wall thinning in pipe is expected gradually increase as nuclear power become superannuated. Therefore there is need to evaluate wall thinning in pipe and corrosion defect by non-destructive method to prevent the accident of the nuclear power facility due to pipe corrosion. Especially for real-time assessment of the wall thinning that occurs in nuclear power plant pipe, the laser ultrasonic technology can be measured even in hard-to-reach areas, beyond the limits of earlier existing contact methods. In this study, the optical method using laser was applied for non-destructive and non-contact evaluation. Ultrasonic signals was acquired through generating ultrasonic by pulse laser and using laser interferometer. First the ultrasonic signal was detected in no wall thinning in pipe, then a longitudinal wave velocity was measured inside of pipe. Artificial wall thinning specimen compared to 20, 30, 40 and 50% of thickness of the pipe was produced and the longitudinal wave velocity was measured. It was possible to evaluate quantitatively the wall thinning area(internal defect depth) cause it was able to calculate the thickness of each specimen using measured longitudinal wave velocity.

Reliability Evaluation for Prediction of Concrete Compressive Strength through Impact Resonance Method and Ultra Pulse Velocity Method (충격공진법과 초음파속도법을 통한 콘크리트 압축강도 예측의 신뢰성 평가)

  • Lee, Han-Kyul;Lee, Byung-Jae;Oh, Kwang-Chin;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.4
    • /
    • pp.18-24
    • /
    • 2015
  • Non-destructive testing (NDT) methods are widely used in the construction industry to diagnose the defects/strength of the concrete structure. However, it has been reported that the results obtained from NDT are having low reliability. In order to resolve this issue, four kinds of NDT test (ultrasonic velocity measurements by P-wave and S-wave and the impact resonance methods by longitudinal vibration and deformation vibration) were carried out on 180 concrete cylinders made with two kinds of mix proportions. The reliability of the NDT results was analyzed and compared through the measurement of the actual compressive strength of the concrete cylinders. The statistical analysis of the results was revealed that the ultrasonic velocity method by S-wave is having lowest coefficient of variation and also most capable of stable observation. Analytical equations were established to estimate the compressive strength of the concrete from the obtained NDT results by relating the actual compressive strength. Moreover the equation established by the ultrasonic velocity method by S-wave had the highest coefficient of determination. Further studies on the stability of non-destructive testing depending on various mixing conditions will be necessary in the future.

A Study on Couplant Medium Improvement for Ultrasonic Inspection System with Water Immersion to Detect Weld Defects (용접결함 검사용 수침식초음파탐상기의 매질개선연구)

  • Jung, Dal-Woo;Choi, Nak-Sam;Park, Yong-Bae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.5
    • /
    • pp.8-14
    • /
    • 2008
  • For nondestructive inspection of electron beam (EB) welding part in automotive power transmission assembly, a pulse-echo ultrasonic testing apparatus in water immersion has been applied using the ultrasonic waves with a frequency of 10MHz. However various problems have appeared during the ultrasonic inspection, which led to some significant mistakes in automatic quality evaluation of the welding parts. Experimental study showed that the state of water couplant medium containing some amount of contaminants, rusts and anti-corrosion agents had considerable influences on the reduction of ultrasonic amplitudes during wave propagation. The amplitude reduction depending on the coupling medium state could bring about some mis-diagnoses for defects in the welding parts. The results proposed that for a reliable inspection of defects in welds the state of water medium should be kept in about 15 volume fractions (vol.%) of anti-corrosion agents and in minimized contaminants.

Ultrasonic velocity as a tool for mechanical and physical parameters prediction within carbonate rocks

  • Abdelhedi, Mohamed;Aloui, Monia;Mnif, Thameur;Abbes, Chedly
    • Geomechanics and Engineering
    • /
    • v.13 no.3
    • /
    • pp.371-384
    • /
    • 2017
  • Physical and mechanical properties of rocks are of interest in many fields, including materials science, petrophysics, geophysics and geotechnical engineering. Uniaxial compressive strength UCS is one of the key mechanical properties, while density and porosity are important physical parameters for the characterization of rocks. The economic interest of carbonate rocks is very important in chemical or biological procedures and in the field of construction. Carbonate rocks exploitation depends on their quality and their physical, chemical and geotechnical characteristics. A fast, economic and reliable technique would be an evolutionary advance in the exploration of carbonate rocks. This paper discusses the ability of ultrasonic wave velocity to evaluate some mechanical and physical parameters within carbonate rocks (collected from different regions within Tunisia). The ultrasonic technique was used to establish empirical correlations allowing the estimation of UCS values, the density and the porosity of carbonate rocks. The results illustrated the behavior of ultrasonic pulse velocity as a function of the applied stress. The main output of the work is the confirmation that ultrasonic velocity can be effectively used as a simple and economical non-destructive method for a preliminary prediction of mechanical behavior and physical properties of rocks.

Shock analysis of a new ultrasonic motor subjected to half-sine acceleration pulses

  • Hou, Xiaoyan;Lee, Heow Pueh;Ong, Chong Jin;Lim, Siak Piang
    • Advances in Computational Design
    • /
    • v.1 no.4
    • /
    • pp.357-370
    • /
    • 2016
  • This paper aims to examine the dynamic response of a newly designed ultrasonic motor under half-sine shock impulses. Impact shock was applied to the motor along x, y or z axis respectively with different pulse widths to check the sensitivity of the motor to the shocks in different directions. Finite Element Analysis (FEA) with the ANSYS software was conducted to obtain the relative displacement of a key point of the motor. Numerical results show that the maximum relative displacement is of micro meter level and the maximum stress is five orders smaller than the Young's modulus of the piezo material, which proves the robustness of the motor.