• 제목/요약/키워드: ultrasonic parameters

검색결과 324건 처리시간 0.027초

초음파 진동을 이용한 미세 버 제거기술 (Technology of Micro Deburring Using the Ultrasonic Vibration)

  • 최헌종;이석우;강은구;최영재;고성림
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.250-253
    • /
    • 2002
  • The operation of surface and edge finishing is the last and essential process of parts machining, because a product is completed as an assembly. Therefore, the quality of the finished parts has a direct effect upon the performance of the product. Especially, the edge quality depending on the burr control process is very important. A number of deburring processes have been developed for macro burrs such as barreling, brushing, chemical methods, etc. However, micro burr removal when piercing a very thin plate is very difficult, because this badly deteriorates the surface quality of the processed part. When ultrasonic wave is propagated in liquids, it forms an infinitude of micro bubbles. These bubbles generate extremely strong force, which removes micro burrs. In ultrasonic micro deburring, the problem is that burrs are not removed completely, because only components of the explosive force directly act on the burrs, which is not enough. An attempt was made to remove the burrs using ultrasonic vibration in water with SiC as an abrasive agent. Because of the abrasive, smoother edges have been achieved. There are many control parameters in ultrasonic deburring such as abrasive size, ultrasonic frequency and amplitude, distance between tool and workpiece, tilt angle of workpiece etc. This study focuses on how distance and tilt angle influence deburring effect. A number of experiments for these parameters have been carried out, and then the effect of each parameter analyzed.

  • PDF

위상차-주파수 다중 파라미터 조절에 의한 초음파 모터 속도 특성 (A Speed Characteristics of the Ultrasonic Motor by the Multi-Parameters adjustment with Phase difference-Frequency)

  • 김동옥;강원창;김성철;오금곤;김영동
    • 전기학회논문지P
    • /
    • 제52권1호
    • /
    • pp.20-27
    • /
    • 2003
  • In this study, we designed and made Ultrasonic motor-digital multi controller(USM-DMC) using FPGA chip, A54SX72A made in Actel Corporation. By the minute, USM-DMC can adjust the frequency, duty ratio, and phase difference parameters of USM by digital input to be each 11bit from PC. Therefore, when we use this controller, it is possible to apply typical three parameters individually as well as multi-parameters simultaneously to control the speed and the torque. What is more, the strongest point is that it can trace frequency based on optimized frequency as compared with the phase difference because we can input optimized resonant frequency while in motoring. And we test the speed of USM with the adjustment of multi-parameters, the phase difference-frequency. As the result of the test, in the case of the multi-parameters of the phase difference and frequency, the speed characteristic is more linear and stable, and wider in the range of control than the single-parameter of the phase difference or the frequency.

초음파를 이용한 Al/Al 하니캄 구조물의 Disbonding 검출에 관한 연구 (A Study on the Disbonding Detection of Al/Al Honeycomb Sandwich Structures by Ultrasonic Methods)

  • 조경식;이주석;장홍근;이승희
    • 비파괴검사학회지
    • /
    • 제10권1호
    • /
    • pp.29-37
    • /
    • 1990
  • In this study the disbonding tests of adhesively bonded Al/Al honeycomb structures were performed by ultrasonic methods. Ultrasonic C-scan squiter method and ultrasonic surface wave attenuation measuring method were applied for the detection of skin/core disbonding. The bonding quality of Al/Al honeycomb structures could be well evaluated by properly controlled ultrasonic parameters.

  • PDF

초음파 진동을 이용한 미세구멍 가공기술 (A Study on Micro-hole Machining Technology using Ultrasonic vibration)

  • 이석우;최헌종;이봉구;최영재
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.231-234
    • /
    • 2002
  • Ultrasonic machining technology has been developed over recent years for the manufacture of cost-effective and quality-assured precision parts for several industrial application such as optics, semiconductors, aerospace, and automobile. Ultrasonic machining process is an efficient and economical means of precision machining of ceramic materials. The process is non-thermal, non-chemical and non-electric and hardly creates changes to the mechanical properties of the brittle materials machined. This paper describes the characteristics of the micro-hole of $\textrm{Al}_2\textrm{O}_3$ by ultrasonic machining with tungsten carbide tool. The effects of various parameters of ultrasonic machining, including abrasives, machining force and pressure, on the material removal rate, hole quality, and tool wear presented and discussed. The ultrasonic Machining of micro-holes in ceramics has been under taken and the machining mechanism in the ultrasonic machining of ceramics based on the fracture-mechanics concept has been analyzed.

  • PDF

과실 비파괴평가용 초음파 변환기 개발 (Development of Ultrasonic Transducer for Nondestructive Evaluation of Whole Fruit)

  • 김기복;이상대;김만수
    • Journal of Biosystems Engineering
    • /
    • 제32권4호
    • /
    • pp.269-275
    • /
    • 2007
  • In this study, ultrasonic transducers for non-destructive contact measurement of whole fruits were developed. The design parameters for ultrasonic transducer such as acoustical impedance of fruits, kinds of piezoelectric materials, ultrasonic wave frequency, and transducer diameter were investigated. In order to match the acoustical impedance between piezoelectric material and fruit, various materials were fabricated and evaluated. Also to control the sensitivity and bandwidth of the ultrasonic transducer, various backing materials were fabricated and evaluated. Especially, the wear plate of the ultrasonic transducer was designed and fabricated considering the curvature of fruit. The central frequencies of two developed ultrasonic transducers were about 100 kHz and 200 kHz, respectively. With the developed ultrasonic transducers, non-destructive evaluation of the fruit will be possible.

60 kHz 초음파 공구 혼을 이용한 이종재료접합의 공정조건 최적화 (The optimization of processing condition of dissimilar material bonding using the 60 kHz ultrasonic transducer)

  • 이동욱;전의식
    • 한국산학기술학회논문지
    • /
    • 제14권3호
    • /
    • pp.991-996
    • /
    • 2013
  • 본 논문에서는 유리와 구리의 이종재료 접합을 위해 고유진동수를 60 [kHz]로 갖는 초음파 혼을 설계하고자 하였다. 초음파 혼의 입력단과 출력단의 단면비, 혼의 길이 등 관계식을 통해 설정하였으며 설계된 혼의 타당성 분석을 위해 모달해석을 수행하였다. 기초실험을 통하여 공정변수 및 반응변수를 설정하였으며, 초음파 공구 혼을 이용하여 이종재료 접합 강도 실험을 실시하였다. 또한 실험 결과를 통해 최적 공정조건을 도출하였다.

초음파 속도를 이용한 Type 316LN 스테인리스 강의 크리프 손상 평가 (Evaluation of the creep damage of the Type 316LN stainless steel by the ultrasonic wave velocity)

  • 이원;노경용;윤송남;김우곤
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.818-823
    • /
    • 2005
  • Creep damage is one of the mosl important characteristics for the stability of high temperature structures such as huge energy converting facilities. Creep failure of Type 316LN stainless steel is highly correlated to generation and growth of the voids. In this paper, in order to investigate the correlation of creep rupture time and ultrasonic parameters (group velocity, angular velocity), creep-damaged Type 316LN specimens and measurements for the ultrasonic parameters were made. However, bi-directional measurements were applied along the load direction and the perpendicular direction to the load line by means of the contact type probe of which the central frequencies are 10MHz, 15MHz and 20MHz. Analyzing the angular velocities of the ultrasonic signals obtained from the load direction, it was confirmed that the angular velocities were declined as the creep time passed when 15MHz and 20MHz probes were used. Also, the group velocities were declined for all three frequencies as the creep time increased. Thus, positive feasibility for the creep damage evaluation by means of the angular and group velocities was confirmed. Moreover, result of analysis for the ultrasonic signal which was obtained from the perpendicular direction upon the angular and group velocities indicated little variation for both of the angular and group velocities. Therefore, the creep damage is likely to represent anisotropic itself.

  • PDF

Study on the heat and mass transfer in ultrasonic assisting vacuum membrane distillation

  • Guo, Hao;Peng, Changsheng;Ma, Weifang;Yuan, Hetao;Yang, Ke
    • Membrane and Water Treatment
    • /
    • 제8권3호
    • /
    • pp.293-310
    • /
    • 2017
  • An ultrasonic assisting vacuum membrane distillation (VMD) system was designed to promote the heat and mass transfer in membrane distillation (MD) process. Both the effects of operating conditions and ultrasonic parameters to permeation flux in this process were investigated; the heat and mass transfer mechanism was also being discussed in this paper. The results showed that the performance of VMD process was improved significantly by ultrasonic assisting. The permeation flux was boosted at a certain feed solution temperature, pressure at permeate side and feed solution velocity whether or not to PP and PTFE. The results also indicated that ultrasonic power and frequency also was the key factor affecting the mass and transfer efficiencies. The feed side transfer coefficient ($K_f$), corresponding to ultrasonic power ($K_f=4.406-0.026{\times}P+7.824{\times}10^{-5}{\times}P^2$) and ultrasonic frequency ($K_f=0.941+0.598{\times}f-0.012{\times}f^2+6.283{\times}10^{-5}f^3$), was obtained and employed in the modeling of ultrasonic assisting VMD process. The modeling results showed that the calculated value of $K_f$ aligned with experimental results well. Both variations of temperature polarization coefficient (TPC) and concentration polarization coefficient (CPC) were studied based on the obtained data. The results showed that both TPC and CPC were improved obviously by the ultrasonic parameters.

초음파 측정에 의한 베어링손상 평가 (Assessment of Bearing Damage by Ultrasonic Measurement)

  • 이상국;이인철
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2004년도 학술대회지
    • /
    • pp.395-400
    • /
    • 2004
  • For the purpose of monitoring by ultrasonic test of the ball bearing conditions in rotating machinery, a system for their diagnosis was developed. ultrasonic technique is used to detect abnormal conditions in the bearing system. And various data such as frequency spectrum, energy and amplitude of ultrasonic signals, and ultrasonic parameters were acquired during experiments with the simulated ball bearing system. Based on the above results and practical application for power plant, algorithms and judgement criteria for diagnosis system was established. Bearing diagnosis system is composed of four parts as follows : sensing part for ultrasonic sensor and preamplifier, signal processing part for measuring frequency spectrum, energy and amplitude, interface part for connecting ultrasonic signal to PC using A/D converter, graphic display and software part for display of bearing condition and for managing of diagnosis program.

  • PDF