• Title/Summary/Keyword: ultrasonic nondestructive Evaluation

Search Result 302, Processing Time 0.023 seconds

A Study on the Nondestructive Evaluation of Material Properties (비파괴적인 재료물성치 평가에 관한 연구)

  • Kim Hyung-Ick;Kim Jeong-Pyo;Seok Chang-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.3 s.168
    • /
    • pp.130-136
    • /
    • 2005
  • The nondestructive evaluation system consisted of a ball indentation tester and a ultrasonic tester was developed to evaluate material properties. The relations between the parameters from test results using the system and the results of tensile and fracture toughness tests were investigated. The fracture toughness and tensile properties could be determined using the system. Some metallic materials were experimented to predict the fracture toughness and tensile properties and verify the relations between them. The predicted fracture toughness and tensile properties show a good agreement with the results obtained by conventional tests. It is found that the material properties and the material degradation can be evaluated using the nondestructive evaluation system.

Ultrasonic C-scan Technique for Nondestructive Evaluation of Spot Weld Quality (Spot용접 접합면의 초음파 비파괴평가 기법 제 1보 C-scan 기법을 중심으로)

  • Park, Ik-Gun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.14 no.2
    • /
    • pp.112-121
    • /
    • 1994
  • This paper discusses the feasibility of ultrasonic C-scan technique for nondestructive evaluation of spot weld quality. Ultrasonic evaluation for spot weld quality was performed by immersion method with the mechanical and the electronic scanning of point-focussed ultrasonic beam(25 MHz). For the sake of the approach to the quantitative measurement of nugget diameter and the discrimination of the corona bond from nugget, preliminary infinitesimal gap experiment by newton ring is tried in order to set up the optimum ultrasonic test condition. Ultrasonic image data obtained were confirmed and compared by optical microscope and SAM(Scanning Acoustic Microscope) observation of the spot-weld cross section. The results show that the nugget diameter can be measured with the accuracy of 1.0mm, and voids included in nugget can be detected to $10{\mu}m$ extent with simplicity and accuracy. Finally, it was found that it is necessary to make a profound study of definite discrimination of corona bond from nugget and the approach of quantitative evaluation of nugget diameter by utilizing the various image processing techniques.

  • PDF

Study on Highly Accuracy Quality Evaluation of Spot Weld by use of Image Processing Technique

    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.5 no.4
    • /
    • pp.38-46
    • /
    • 1996
  • This paper discusses the feasibility of Ultrasonic Nondestructive Evaluation (UNDE) technique for sport weld quality. Ultrasonic c-scan image assisted by image processing technique was used for Nondestructive Evaluation(NDE) of spot weld quality. Ultrasonic testing results obtained were confirmed and compared by Optical Microscope and SAM(Scanning Acoustic Mircroscope) observation of the spot-weld cross section, The results show that the nugget dinameter can be successfully measured with the accuracy of 0.5mm. It was ascertained that ultrasonic c-scan technique is very effective method for the sake of the approach to the quantitative measurement of nugget diameter and the discrimination of the corona bond from nugget. Additional support for the above conclusions is provided by the results for galvanized steel. The ultrasonic results for galvanized welds generally correspond to the results for uncoated steel. Finally, it was found that the above-mentioned technique can be sufficiently applied to NDE method for securing the Quality Assurance(QA) of spot welded products in production line.

  • PDF

Evaluation of Near/Far Field and Directivity of Ultrasonic Transducer for Turbine Rotor Disc (터빈 로타 디스크의 초음파탐상을 위한 초음파탐촉자의 지향성 및 탐상범위)

  • Won, S.H.;Chang, H.K.;Cho, K.S.;Lee, J.O.;Lee, J.K.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.18 no.3
    • /
    • pp.163-171
    • /
    • 1998
  • Near/far field length and directivity of transducers were investigated for the improvement and evaluation of the detectability of flaws in a disc. The reference block is fabricated for the disc of stage 6 in Yonggwang unit 1. The near/far field and directivity of an ultrasonic transducer with the center frequency of 5MHz were calculated for the inspection of the disc. These values showed good agreements with the experimental results. In the system composed of a wedge and a disc, those are evaluated theoretically and experimentally for the specimen with the artificial flaws of the size 2mm and 4mm and an ultrasonic transducer with the center frequency 5MHz and diameter 0.5inch. The detectability of keyway-flaw and detectable region for inspection were evaluated by using both tangential $45^{\circ}$ and $90^{\circ}$ transducers located at the distance of 53mm and 75mm from the disc hub, respectively.

  • PDF

Development of Ultrasonic Wave Propagation Imaging System

  • Chia, Chen-Ciang;Lee, Jung-Ryul;Kim, Jong-Heon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.4
    • /
    • pp.283-292
    • /
    • 2009
  • Laser-based ultrasonic sensing requires the probe with fixed fecal length, but this requirement is not essential in laser-based ultrasonic generation. Based on this fact, we designed a pulsed laser-based ultrasonic wave propagation imaging (UWPI) system with a tilting mirror system for rapid scanning of target, and an in-line band-pass filtering capable of ultrasoaic mode selection. 1D-temporal averaging, 2D-spatial averaging, and 3D-data structure building algorithms were developed far clearer results allowing fur higher damage detectability. The imaging results on a flat stainless steel plate were presented in movie and snapshot formats which showed the propagation of ultrasound visible as a concentric wavefield emerging from the location of an ultrasonic sensor. A hole in the plate with a diameter of 1 mm was indicated by the scattering wavefields. The results showed that this robust UWPI system is independent of focal length and reference data requirements.

Comparative Study of Linear and Nonlinear Ultrasonic Techniques for Evaluation Thermal Damage of Tube-Like Structures

  • Li, Weibin;Cho, Younho;Li, Xianqiang
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.1
    • /
    • pp.1-6
    • /
    • 2013
  • Ultrasonic guided wave techniques have been widely used for long range nondestructive detection in tube-like structures. The present paper investigates the ultrasonic linear and nonlinear parameters for evaluating the thermal damage in aluminum pipe. Specimens were subjected to thermal loading. Flexible polyvinylidene fluoride (PVDF) comb transducers were used to generate and receive the ultrasonic waves. The second harmonic wave generation technique was used to check the material nonlinearity change after different heat loadings. The conventional linear ultrasonic approach based on attenuation was also used to evaluate the thermal damages in specimens. The results show that the proposed experimental setup is viable to assess the thermal damage in an aluminum pipe. The ultrasonic nonlinear parameter is a promising candidate for the prediction of micro-damages in a tube-like structure.

Nondestructive Contactless Sensing of Concrete Structures using Air-coupled Sensors

  • Shin, Sung-Woo;Hall, Kerry S.;Popovics, John S.
    • International Journal of Safety
    • /
    • v.7 no.2
    • /
    • pp.17-22
    • /
    • 2008
  • Recent developments in contactless, air-coupled sensing of seismic and ultrasonic waves in concrete structures are presented. Contactless sensing allows for rapid, efficient and consistent data collection over a large volume of material. Two inspection applications are discussed: air-coupled impact-echo scanning of concrete structures using seismically generated waves, and air-coupled imaging of internal damages in concrete using ultrasonic tomography. The first application aims to locate and characterize shallow delamination defects within concrete bridge decks. Impact-echo method is applied to scan defected concrete slabs using air coupled sensors. Next, efforts to apply air-coupled ultrasonic tomography to concrete damage imaging are discussed. Preliminary results are presented for air-coupled ultrasonic tomography applied to solid elements to locate internal defects. The results demonstrate that, with continued development, air-coupled ultrasonic tomography may provide improved evaluation of unseen material defects within structures.

Models of Reliability Assessment of Ultrasonic Nondestructive Inspection (초음파 비파괴검사의 신뢰도 평가 모델)

  • Park, I.K.;Park, U.S.;Kim, H.M.;Park, Y.W.;Kang, S.C.;Choi, Y.H.;Lee, J.H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.6
    • /
    • pp.607-611
    • /
    • 2001
  • Ultrasonic inspection system consist of the operator, equipment and procedure. The reliability of results in ultrasonic inspection is affected by its ability. Furthermore, the reliability of nondestructive testing is influenced by the inspection environment, materials and types of defect. Therefore, it is very difficult to estimate the reliability of NDT due to the various factors. In this study, the probability of detection by logistic probability model and Monte Carlo simulation is used for the reliability assessment of ultrasonic inspection. The utility of the NDT reliability assesment is verified by the analysis of the data from round robin test nth these models.

  • PDF

Angle Beam Ultrasonic Testing Models and Their Application to Identification and Sizing of Surface Breaking Vertical Cracks

  • Song, Sung-Jin;Kim, Hak-Joon;Jung, Hee-Jun;Kim, Young-H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.6
    • /
    • pp.627-636
    • /
    • 2002
  • Identification and sizing of surface breaking vertical cracks using angle beam ultrasonic testing in practical situation quite often become very difficult tasks due to the presence of non-relevant signals caused by geometric reflectors. The present work introduces effective and systematic approaches to take care of such a difficulty by use oi angle beam ultrasonic testing models that can predict the expected signals from various targets very accurately. Specifically, the model-based TIFD (Technique for Identification of Flaw signals using Deconvolution) is Proposed for the identification of the crack tip signals from the non-relevant geometric reflection signals. In addition, the model-based Size-Amplitude Curve is introduced for the reliable sizing of surface breaking vertical cracks.

A Study on Scattered Fields Analysis of Ultrasonic SH-Wave from Multi-Defects by Boundary Element Method (경계요소법을 이용한 다중결함의 SH형 초음파 산란장 해석에 관한 연구)

  • Lee, Jun-Hyeon;Lee, Seo-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.11 s.170
    • /
    • pp.1878-1885
    • /
    • 1999
  • Ultrasonic technique which is one of the most common nondestructive evaluation techniques has been applied to evaluate the integrity of structures by analyzing the characteristic of scattering sign al from internal defects. Therefore, a numerical analysis of ultrasonic scattering field due to defect profiles is absolutely needed for the accurate, quantitative estimation of internal defects. In this paper, the SH-wave scattering by multi-cavity defects and inclusion using Elastodynamic Boundary Element Method is studied. The effects of shape and distance of defects on transmitted and reflected fields are considered. The interaction of multi-cavity defects in SH-wave scattering is also investigated. Numerical calculations by the BEM have been carried out to predict near field solution of scattered fields of ultrasonic SH-wave. The presented results can be used to improve the detection sensitivity and pursue quantitative nondestructive evaluation for inverse problem.