• Title/Summary/Keyword: ultrasonic location system

Search Result 123, Processing Time 0.028 seconds

LMI-BASED $H_{\infty}$ LATERAL CONTROL OF AN AUTONOMUS VEHICLE BY LOOK-AHEAD SENSING

  • Kim, C.S.;Kim, S.Y.;Ryu, J.H.;Lee, M.H.
    • International Journal of Automotive Technology
    • /
    • v.7 no.5
    • /
    • pp.609-618
    • /
    • 2006
  • This paper presents the lateral control of an autonomous vehicle by using a look-ahead sensing system. In look-ahead sensing by an absolute positioning system, a reference lane, constructed by straight lanes or circular lanes, was switched by a segment switching algorithm. To cope with sensor noise and modeling uncertainty, a robust LMI-based $H_{\infty}$ lateral controller was designed by the feedback of lateral offset and yaw angle error at the vehicle look-ahead. In order to verify the safety and the performance of lateral control, a scaled-down vehicle was developed and the location of the vehicle was detected by using an ultrasonic local positioning system. In the mechatronic scaled-down vehicle, the lateral model and parameters are verified and estimated by a J-turn test. For the lane change and reference lane tracking, the lateral controllers are used experimentally. The experimental results show that the $H_{\infty}$ controller is robust and has better performance compared with look-down sensing.

User Identification and Entrance/Exit Detection System Using Ultrasonic Sensors (초음파 센서를 사용한 사용자 식별 및 출입 감지 시스템)

  • Lee, Seon-Woo;Kim, Jong-Wan
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.660-665
    • /
    • 2006
  • 본 논문에서는 유비쿼터스 컴퓨팅 구현에 있어서 중요 핵심 요소 기술인 실내에서의 사용자의 위치를 인식하면서 동시에 사용자를 식별하는 방법에 대해 제안하고자 한다. 제안된 사용자 식별 방법은 초음파 센서의 물체까지의 거리를 측정할 수 있는 특성에 기초하여 구성원의 키 높이의 다름을 주요한 식별 특성으로 이용하는 방법이다. 또한 사용자 식별을 수행하는 것과 동시에 식별된 사용자가 센서가 장착된 문을 통과하여 들어왔는지 나갔는지를 감지하는 출입 감지 방법도 제안한다. 기본적인 출입 감지 방법의 아이디어는 2개 초음파 센서의 물체 감지 순서를 이용하여 개발되었다. 제안된 방법의 성능 검증을 위해 1단계의 프로토타입을 만들었으며, 개발된 프로토타입을 이용하여 3명의 가족 구성원으로 이루어진 일반 가정집의 화장실에 장착하여 성능 실험을 실시하였다. 실험 결과 100%의 사용자 식별 성능 및 평균 98%의 출입 감지 성능을 얻었다.

  • PDF

The Development of Obstacle Avoidance Algorithm for Unmanned Vehicle Using Ultrasonic Sensor

  • Yu, Whan-Sin;Lee, Woon-Sung;Kim, Jung-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.408-412
    • /
    • 2003
  • Obstacle avoidance algorithm is very important on an unmanned vehicle. Therefore, in this research, we propose a algorithm of obstacle avoidance and we can prove through vehicle test and sensor experiments. Obstacle avoidance must be divided into two parts: the first part includes the longitudinal control for acceleration and deceleration and the second part is the lateral control for steering control. Each system is used for unmanned vehicle control, which notes its location, recognizes obstacles surrounding it, and makes a decision how fast to proceed according to circumstances. During the operation, the control strategy of the vehicle can detect obstacles and perform obstacle avoidance on the road, which involves vehicle velocity. In this paper, we propose a method for vehicle control, modeling, and obstacle avoidance, which are confirmed through vehicle tests.

  • PDF

Obstacle Avoidance of an Autonomous Mobile Robot Using Image Processing (영상 처리를 통한 자율 이동로봇의 장애물 회피)

  • Lee, Kyu-Yun;Kim, Joo-Woong;Lim, Joong-Kyu;Eom, Ki-Hwan
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.943-944
    • /
    • 2006
  • In this paper, we implemented the autonomous mobile robot which can recognize and avoid obstacles, then move to its destination using a camera and ultrasonic sensors. The mobile robot can avoid both stationary obstacles with a camera and moving obstacles with ultrasonic sensors. It can find the self-location with the map-based system, that is, it attempts to localize by collecting sensor data, then updating some belief about its position with respect to a map of the environment.

  • PDF

Position Estimation of Mobile Robots using Multiple Active Sensors with Network

  • Jin, Tae-Seok
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.11 no.4
    • /
    • pp.280-285
    • /
    • 2011
  • Recently, with the development of service robots and the concept of ubiquitous, the position estimation of mobile objects has received great interest. Some of the localization schemes are introduced, which provide the relative location of the moving objects subjected to accumulated errors. To implement a real time localization system, a new absolute position estimation method for a mobile robot in indoor environment is proposed. Design and implementation of the localization system comes from the usage of active beacon systems (based upon RFID technology). The active beacon system is composed of an RFID receiver and an ultra-sonic transmitter. The RFID receiver gets the synchronization signal from the mobile robot and the ultra-sonic transmitter sends out the traveling signal to be used for measuring the distance. Position of a mobile robot in a three dimensional space can be calculated basically from the distance information from three beacons and the absolute position information of the beacons themselves. In some case, the mobile robot can acquire the ultrasonic signals from only one or two beacons, due to the obstacles located along the moving path. In this paper, a position estimation scheme using fewer than three sensors is developed. Also, the extended Kalman filter algorithm is applied for the improvement of position estimation accuracy of the mobile robot.

User Localization System for SmartHome Service (스마트 홈서비스를 위한 사용자 위치 추정 시스템)

  • Sim, Jae-Ho;Han, Seung-Jin;Rim, Ki-Wook;Lee, Jung-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.5
    • /
    • pp.155-162
    • /
    • 2007
  • For providing smart home service, middleware technologies for electronic appliance control by network and user location information for location based service are important. Recently research using ultrasonic and radio signal are affected by the obstacle. In this paper, we suggest inertial sensor that is not affected by the obstacle. Also, we use RFID for initializing position. It solve error accumulation and position initialize problem. In this paper, we suggest following system for smarthome service and localization. This system are composed smarthome middleware, user localization system on middleware, inertial sensor and RFID Reader. This system shows operation without affect of obstacle in smarthome environment.

  • PDF

A Study on Location Tracking Streetlight (위치추적 가로등에 관한 연구)

  • Kim, Bum-Su;Kim, Seung-Goo;Song, Hyeong-Ho;Kim, Bo-Ryeon;Han, Young-Oh
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.6
    • /
    • pp.1275-1280
    • /
    • 2018
  • We made a smartphone interlocking location tracking streetlight and remote display device to compensate the defect of real time identifiable CCTV streetlights and child safety notification applications. It controls brightness of LED by detecting the surrounding brightness and objects with ultrasonic sensor and illuminance senor. The CCTV receives the location of smartphone by Bluetooth and takes the target of the location. It realizes a wireless transmission system that the video is upload to the tablet PC via WiFi.

A Study on the Location Awareness System Using TOA(Time of Arrival) of CSS(Chirp Spread Spectrum) Algorithm (CSS 기반의 TOA 알고리즘을 이용한 위치인식 시스템 구현에 관한 연구)

  • Kim, Jung-Soo;Yang, Jin-Uk;Yang, Sung-Hyun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.7 no.2
    • /
    • pp.13-25
    • /
    • 2008
  • In this paper, we propose the Location Awareness System adjusting Ranging Technology for CSS(Chirp Spread Spectrum) which is adopted on 2.45GHz standard in IEEE 802.15.4a and TOA(Time-of-Arrival) algorithm. The conventional methods have adopted RSSI, ultrasonic waves and infrared rays in Zigbee. RSSI measures strength indication of received signal and recognizes the position of nodes in RF boundary. However, this technology has the following problems; lots of error by the change of the channel environment and much power consumption. In this paper, adopting chirp pulse on 2.45GHz standard in IEEE 802.15.4a and SDS-TWR(Symmetrical Double Side-Two Way Ranging) method using the characteristic of Spread Spectrum, a new Location Awareness System is suggested. The distance and the coordinate are measured within ${\pm}\;5cm$ by TOA(Time of Arrival) algorithm and proposed algorithm and the data in error rate is decreased less than 1%. Through these results, the algorithm suggested in this paper is verified for its performance in a computer simulation.

  • PDF

Development of Trawl Monitoring System ( 1 ) - Distance Measuring System between Trawl Doors - (트롤 모니터링 시스템의 개발에 관한 연구 ( 1 ) - 트롤 전개판의 전개 간격 계측 시스템 -)

  • Shin, Hyeon-Ok;Lee, Chun-Woo
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.33 no.3
    • /
    • pp.189-193
    • /
    • 1997
  • We make an ultrasonic system as a trial to measure the distance between trawl doors, and carried out a water tank ($24{\times} 24$m, water depth 1 m) experiment for confirming the practical use of the system in October 1996. This system calculates the distance between the pinger (50 kHz) and the transponder (50 kHz/70 kHz) attached each one on the trawl door by measuring the time-difference of receiving with two channels receiver on the trawler. This paper assums that both the length of the warp from the stern to the trawl door is same. At results the system shows a good relation between the distance and the time-difference of receiving while the location of the pinger is moved in variously in the water tank, and it was found that the method of measuring techniques on the prototype system could be applied to the measurement of the trawl door opening in the field experiment.

  • PDF

Development of Sensor System for Indoor Location-Based Service Implementation (실내 위치기반 서비스 구현을 위한 센서 시스템 개발)

  • Cha, Joo-Heon;Lee, Kyung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.11
    • /
    • pp.1433-1439
    • /
    • 2012
  • This paper introduces a sensor system based on indoor locations in order to implement the Building Energy Management System. This system consists of a thermopile sensor and an ultrasonic sensor. The sensor module is rotated by $360^{\circ}$ and yawed up-and-down by two electric motors. Therefore, it can simultaneously detect the number and location of the inhabitants in the room. It uses wireless technology to communicate with the building manager or the smart-home server, and it can save electric energy by controlling the lighting system or heating/air conditioning equipment automatically. We also demonstrate the usefulness of the proposed system by applying it to a real environment.