• Title/Summary/Keyword: ultrasonic energy

Search Result 647, Processing Time 0.03 seconds

A Study on Acoustic Emission Characteristics of CFRP in aircraft operations (운항 중 실구조물(항공기 축소모델)에서의 탄소섬유강화플라스틱(CFRP)의 음향방출신호 특성에 관한 연구)

  • Lee, Kyung-Won;An, Ju-Seon;Hwang, Woong-Gi;Lee, Jong-Oh;Lee, Sang-Yul;Lee, Bo-Young
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.18 no.4
    • /
    • pp.59-66
    • /
    • 2010
  • Aerospace structures need high stability and long life because many personal injuries can result from an accident and securing structural integrity for various external environments is more important than any other thing. So first of all we must prove the destruction properties for operating environment, have prediction technology about damage evolution and life, and develop an economical non-destructive technology capable of detecting structure damage. Acoustic emission (AE) have no need of artificial environment like ultrasonic inspection or radio fluoroscopy to emit a certain energy, is a testing technique using seismic signal resulting from interior changes of solids, and enables to observe if any fault is appeared and it grows seriously or not while running. In this study we suggest the method of structural integrity evaluation for aerospace structures through the acoustic emission technique, for which a model plane was manufactured and an actual operation test was conducted.

Effects of pH, molar ratios and pre-treatment on phosphorus recovery through struvite crystallization from effluent of anaerobically digested swine wastewater

  • Kim, Daegi;Min, Kyung Jin;Lee, Kwanyong;Yu, Min Sung;Park, Ki Young
    • Environmental Engineering Research
    • /
    • v.22 no.1
    • /
    • pp.12-18
    • /
    • 2017
  • Struvite precipitation has been proven to be an effective method in removing and recovering ammonia nitrogen (N) and phosphate phosphorus (P) from wastewater. In this study, effects of pH, molar ratios and pre-treatment of effluent of anaerobically digested swine wastewater were investigated to improve struvite crystallization. The magnesium : ammonium : phosphate ratio of 1.2 : 1.0 : 1.0 was found to be optimal, yet the molar ratio in the wastewater was 1 : 74.9 : 1.8. From the analysis, the optimum pH was between 8.0 and 9.0 for maximal phosphate P release and from 8.0 to 10.0 for maximal ammonia N and phosphate P removal from real wastewater. Analysis from Visual MINTEQ predicted the pH range of 7-11 for ammonia N and phosphate P removal and recovery as struvite. For pre-treatment, microwave pre-treatment was ineffective for phosphate P release but ultrasound pre-treatment showed up to 77.4% phosphate P release at 1,000 kJ/L of energy dose. Precipitates analysis showed that phosphorus and magnesium in the collected precipitate had almost same values as theoretical values, but the ammonia content was less than the theoretical value.

Observational study of wind characteristics from 356-meter-high Shenzhen Meteorological Tower during a severe typhoon

  • He, Yinghou;Li, Qiusheng;Chan, Pakwai;Zhang, Li;Yang, Honglong;Li, Lei
    • Wind and Structures
    • /
    • v.30 no.6
    • /
    • pp.575-595
    • /
    • 2020
  • The characteristics of winds associated with tropical cyclones are of great significance in many engineering fields. This paper presents an investigation of wind characteristics over a coastal urban terrain based on field measurements collected from multiple cup anemometers and ultrasonic anemometers equipped at 13 height levels on a 356-m-high meteorological tower in Shenzhen during severe Typhoon Hato. Several wind quantities, including wind spectrum, gust factor, turbulence intensity and length scale as well as wind profile, are presented and discussed. Specifically, the probability distributions of fluctuating wind speeds are analyzed in connection with the normal distribution and the generalized extreme value distribution. The von Karman spectral model is found to be suitable to depict the energy distributions of three-dimensionally fluctuating winds. Gust factors, turbulence intensity and length scale are determined and discussed. Moreover, this paper presents the wind profiles measured during the typhoon, and a comparative study of the vertical distribution of wind speeds from the field measurements and existing empirical models is performed. The influences of the topography features and wind speeds on the wind profiles were investigated based on the field-measured wind records. In general, the empirical models can provide reasonable predictions for the measured wind speed profiles over a typical coastal urban area during a severe typhoon.

Effect of Heat-Treated Temperature on Surface Crystal Structure and Catalytic Activity of ACF/ZnO Composite under Ultraviolet Irradiation and Ultrasonication

  • Zhang, Kan;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.2
    • /
    • pp.136-141
    • /
    • 2010
  • ACF/ZnO photocatalyst was synthesized by a sol-gel method using activated carbon fiber (ACF) and Zn $(NO_3)_2$ as precursors. Samples were characterized by Brunauer-Emmett-Teller measurements (BET), scanning electron microscope (SEM), X-ray diffraction (XRD), and energy dispersive X-ray (EDX). The XRD results showed that ACF/ZnO composites only included a hexagonal phase by heat-treated temperature at $400^{\circ}C$, $500^{\circ}C$, $600^{\circ}C$, and $700^{\circ}C$. The SEM analysis revealed that the ACF/ZnO composites did not exhibit any morphological changes of the catalyst surface according to the different heat-treated temperatures. The photocatalytic activity of the samples was tested for degradation of methylene blue (MB) solutions under ultraviolet (UV) light and ultrasonication respectively. The results showed that the photocatalytic activity of ACF/ZnO composites heat-treated at $500^{\circ}C$ was higher than other samples, which is ascribed to the fine distribution of ZnO particles on the surface of the ACF. In addition, an ultrasound of low power (50 W) was used as an irradiation source to successfully induce ACF/ZnO composites to perform sonocatalytic degradation of MB. Results indicated that the sonocatalytic method in the presence of ACF/ZnO composites is an advisable choice for the treatments of organic dyes.

Analysis of Low-Profile Piezoelectric Butterfly Linear Motor using 3D Laser Vibrometer

  • Lee, Won-Hee;Kang, Chong-Yun;Paik, Dong-Soo;Ju, Byeong-Kwon;Yoon, Seok-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.325-325
    • /
    • 2010
  • Piezoelectric linear motors have been widely studied for auto focusing devices of digital cameras and cellular phones due to their simple structure. In this paper, we confirmed that novel piezoelectric butterfly linear motor was fabricated and its dynamic properties were analyzed. The piezoelectric transducer (having size $9{\times}8{\times}1\;mm^3$) is composed of an elastic plate, which includes a tip for energy transfer and two fixing protrusions for fixture, and two piezoelectric ceramics. The butterfly linear motor has been designed and optimized using A TILA simulation program. The superposed motion is an elliptical vibration on the tip. The actual movement of the manufactured actuator was confirmed by a 3D laser dopier vibrometer and compared with the simulation results. The results of numerical study and experimental investigation will be used for the future optimization of the actuator and the realization of the advanced ultrasonic motor.

  • PDF

A Study on the Intensity Measurng of Ultrasonics by Added Two Sensive point of Thermocouple (이감온점 열전대에 의한 초음파의 강도측정에 관한 연구)

  • Kim, Ju-Hong;Lee, Dong-Hwi;O, Yeong-Don
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.8 no.6
    • /
    • pp.1-7
    • /
    • 1971
  • This paper describes concerning the method of measurement for the intensity of ultrasonics in liquid. The probe which is added two sensive point of thermocople which is surrounded by the absorbed material of sonic wave on the both side of the refleftite plate have measured the intensity of ultrasonics indirectly by the difference of the temperature of two sensive point which had raised the temperature by the sonic wave and its reflective wave which transmitted the ultrasonic energy. This minify the influence from the temparature of liquid and time constant. Consequently, this is the basic industrial method which is with in the bounds of possibility on the simple measurement of the intensity of the local ultrasonics concerning direction of its propagation.

  • PDF

Measurement Mothod for Internal Defect of Pipe by Using Phase Shifting Real-Time Holographic Interferometry (위상이동 실시간 홀로그래픽 간섭법을 이용한 파이프의 내부결함 측정법)

  • Kang, Young-June;Moon, Sang-Joon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.2
    • /
    • pp.68-75
    • /
    • 1996
  • More accurate inspection method for facilities of nuclear power plants is required to guarantee the continuous and stable energy supply. The portion of inspection for pipes and pressure vessels is relatively big in the power plants. Conventional inspection methods using ultrasonic wave, x-ray and eddy current for nondestructive testing in nuclear power plants have been performed as the method of contact with objects to be inspected. With this reason these methods have been taken relatively much time, money and manpower. And the area to be inspected is limited by the location of probe or film. These difficulties make the inspection into a time-consuming work. We propose an optical defect detection method using phase shifting realtime holographic interferometry. This method has an advantage that the inspection can be performed at a time for relatively wide area illuminated by the laser beam, a coherent light source and can help an inspector recognize not only defects but also the high stressed areas. In this paper we show that the quantitative measurement using holographic interferometry and image processing for defect in pressure vessels is possible.

  • PDF

Time-Frequency Analysis of Lamb wave mode (램파모드의 시간-주파수 해석)

  • 박익근;안형근
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.1
    • /
    • pp.133-140
    • /
    • 2001
  • Recently, to assure the integrity of a structural components such as piping pressure vessels and thinning structure, Lamb wave inspection technique has been used in material evaluation. It is very important to select the optimal Lamb wave mode and to analyze the signal accurately because of its unique dispersion properties grnerating several modes within the speci-men. It this study, the feasibility of material evaluation applications using wavelet analysis of Lamb wave has been veir-fied experimentally. These results show as follows; 1)dispersion characteristic of each mode in dispersion curve is demon-strated that A0 mode propagating material surface is useful mode having the lest energy loss and not sensitive to surface condition. 2) it can be detected even the micro defect ($1\times2mm$) fabricated in ultrasonic probe flaw distance (290mm) to axis direction. 3) the wavelet transform which is called "time-frequency analysis" shows the Lamb wave propagation due to the change of materials characterization can be evaluated at each frequency and experimental group velocity of Lamb wave agrees quite well with that of simulated dispersion curve.ion curve.

  • PDF

Cooling Performance of Liquid CPU Cooler using Water/PG-based $Al_2O_3$ Nanofluids (물/PG-기반 $Al_2O_3$ 나노유체를 적용한 수냉식 CPU 쿨러의 냉각성능)

  • Park, Y.J.;Kim, K.H.;Lee, S.H.;Jang, S.P.
    • Journal of ILASS-Korea
    • /
    • v.19 no.1
    • /
    • pp.19-24
    • /
    • 2014
  • In this study, the cooling performance of a liquid CPU cooler using the water/propylene glycol(PG)-based $Al_2O_3$ nanofluids is experimentally investigated. Water/PG-based $Al_2O_3$ nanofluids are manufactured by two-step method with ultrasonic energy for 10 hours. The volume fractions of the nanofluids are 0.25% and 0.35%. Thermal conductivity and viscosity of the nanofluids are measured to theoretically predict the thermal performance of the liquid CPU cooler using performance factor. Performance factor results indicate that the cooling performance of the liquid CPU cooler can be improved using the manufactured nanofluids. To evaluate the cooling performance of the liquid CPU cooler experimentally, temperature differences between ambient air and heater are measured for base fluid and nanofluids respectively. Based on the results, it is shown that performance of the liquid CPU cooler using $Al_2O_3$ nanofluids is improved maximum up to 8.6% at 0.25 Vol.%.

Sensible heat flux estimated by gradient method at Goheung bay wetland (고흥만 습지에서 경도법으로 산출한 현열플럭스)

  • Kim, Dong-Su;Kwon, Byung-Hyuk;Kim, Il Kyu;Kang, Dong Hwan;Kim, Kwang-Ho;Kim, Geun-Hoi;Park, Jun-Sang
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.20 no.2
    • /
    • pp.156-167
    • /
    • 2008
  • Meorological data have been collected to monitor the wetland area in Goheung bay since 2003 and four intensive observations were conducted to study effects of the atmospheric turbulence on the energy budget and the ecological changes. We improved an algorithm to estimate the sensible heat flux with routine data. The sensible heat flux estimated by gradient method was in good agreement with that measured by precision instruments such as surface layer scintillometer and ultrasonic anemometer. Diurnal variations of sensible heat flux showed analogous tendency to those of temperature gradient. When the vertical wind shear of horizontal wind components was weak, even though temperature gradient was strong, the gradient method underestimated the sensible heat flux. A compensation for the cloud will make this gradient method be a helpful tool to monitor the ecosystem without expensive instruments except for weak wind shear and temperature gradient.