• Title/Summary/Keyword: ultrapure

Search Result 51, Processing Time 0.026 seconds

A Pd Doped PVDF Hollow Fibre for the Dissolved Oxygen Removal Process

  • Batbieri G.;Brunetti A.;Scura F.;Lentini F.;Agostino R G.;Kim, M.J.;Formoso V.;Drioli E.;Lee, K.H.
    • Korean Membrane Journal
    • /
    • v.8 no.1
    • /
    • pp.1-12
    • /
    • 2006
  • In semiconductor industries, dissolved oxygen is one of the most undesirable contaminants of ultrapure water. A method for dissolved oxygen removal (DOR) consists in the use of polymeric hollow fibres, loaded with a catalyst and fed with a reducing agent such as hydrogen. In this work, PVDF hollow fibres loaded with Pd were characterized by means of perporometry, scanning electron microscopy (SEM), energy dispersive X-ray (EDX). The hollow fibre analyzed shows a five-layer structure with remarkable morphological differences. An estimation of pore diameters and their distribution was performed giving a mean pore diameter of 100 nm. The permeance and selectivity of the fibres were measured using $H_2,\;N_2,\;O_2$ as single gases, at different operating conditions. An $H_2$ permeance of $37 mmol/m^2s$ was measured and $H_2/O_2$ and $H_2/N_2$ selectivities of ca. 3 were obtained. $H_2$ permeance was 1/3 when a water stream flows in the shell side. Catalytic fibrebehaviour was simulated using a mathematical model for a loop membrane reactor, considering only $O_2$ and $H_2$ diffusive transport inside the membrane and their catalytic reaction. Dimensionless parameters such as the Thiele modulus are employed to describe the system behaviour. The model agrees well with the experimental reaction data.

Formulation of Water-soluble Topical Preparations of Epidermal Growth Factor (상피세포성장인자의 수용성 외용제제화)

  • Lee, Yoo-Cheol;Park, Eun-Seok;Chi, Sang-Cheol
    • Journal of Pharmaceutical Investigation
    • /
    • v.25 no.3
    • /
    • pp.177-184
    • /
    • 1995
  • In order to formulate an aqueous topical preparation of epidermal growth factor(EGF) for the treatment of open wound and bum, the stability of EGF in aqueous vehicles containing various stabilizers was evaluated and the pharmacological activity of gel preparations formulated with poloxamer 407 was determined with wound model. Various additives, which are known as potent stabilizers for proteins and polypeptides so far, were used to increase the stability of EGF in aqueous vehicles. The contents of EGF in the vehicles containing stabilizers were determined with an HPLC method after the storage at $37^{\circ}C$. EGF was more stable in ultrapure water than RO water or saline. All the additives studied resulted in deleterious effects on EGF stability. Therefore, it was speculated that any additives or impurities in the vehicle made EGF unstable. However, nitrogen purge of solution increased the stability of EGF in aqueous vehicles. The aqueous topical preparations of EGF were formulated with poloxamer 407 as a gel base in saline. Gelatin or amastatin was employed as a protease inhibitor. The pharmacological effect of EGF gel was studied with open wound model in mice. EGF preparations, made of oleaginous base or poloxamer gel base, showed significant healing effect compared to the control group(p<0.05). The addition of protease inhibitor in poloxamer 407 gel resulted in significant healing effect compared to the gel without it(p<0.05). Body weights of mice treated with EGF preparation were increased at the first day after the formation of open wound, while those of the control group were decreased. The EGF gel made of poloxamer 407 containing a pretense inhibitor would be a promising aqueous topical preparation for EGF.

  • PDF

Membrane Processes for Energy Saving in Japan

  • Nakao, Shin-ichi
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1994.06a
    • /
    • pp.45-58
    • /
    • 1994
  • Over the last 20 years, membrane separation processes, such as reverse osmosis, ultrafiltration and microfiltration, have been widely adopted by different industries. Commercial uses of membrane have displaced conventional separation processes, such as distillation, evaporation, precoat filter and so on. Membrane separation processes are often more capital and energy efficient when compared with conventional separation processes. Membrane devices and systems are almost always compact and modular. These are the well-known advantages of membrane separation processes. The disadvantage of the membrane process is that the process does not have scale merit and thus the membrane process is suitable for the small and middle size applications. Energy saving is, of course, the biggest advantage of the membrane process, and in many industries the membrane processes are employed because of this reason. Membrane process has other big advantage. In many applications membrane processes provide much higher quality of product than conventional processes. The example is ultrapure water production by membrane processes in semiconductor industry. Conventional technologies never offer such good quality of pure water. If you can obtain both energy saving and higher quality of product at the same time by membrane processes, this is the best application of membrane processes. One example is the concentration of orange juice by membrane, which has already been commercialized in Japan. Comparing with the conventional vacuum evaporation process, juice concentrated by the membrane process has much better taste and flavor and the energy consumption in the membrane process is much less than the evaporation process. In this paper, first membrane separation technology will be classified and then Japanese membrane manufacturers and new modules and devices under development in Japan will be introduced. Fourth energy saving in membrane process will be discussed and finally practical applications of membrane processes in Japan will be shown.

  • PDF

Wind resistance performance of a continuous welding stainless steel roof under static ultimate wind loading with testing and simulation methods

  • Wang, Dayang;Zhao, Zhendong;Ou, Tong;Xin, Zhiyong;Wang, Mingming;Zhang, Yongshan
    • Wind and Structures
    • /
    • v.32 no.1
    • /
    • pp.55-69
    • /
    • 2021
  • Ultrapure ferritic stainless steel provides a new generation of long-span metal roof systems with continuous welding technology, which exhibits many unknown behaviors during wind excitation. This study focuses on the wind-resistant capacity of a new continuous welding stainless steel roof (CWSSR) system. Full-scale testing on the welding joints and the CWSSR system is performed under uniaxial tension and static ultimate wind uplift loadings, respectively. A finite element model is developed with mesh refinement optimization and is further validated with the testing results, which provides a reliable way of investigating the parameter effect on the wind-induced structural responses, namely, the width and thickness of the roof sheeting and welding height. Research results show that the CWSSR system has predominant wind-resistant performance and can bear an ultimate wind uplift loading of 10.4 kPa without observable failures. The welding joints achieve equivalent mechanical behaviors as those of base material is produced with the current of 65 A. Independent structural responses can be found for the roof sheeting of the CWSSR system, and the maximum displacement appears at the middle of the roof sheeting, while the maximum stress appears at the connection supports between the roof sheeting with a significant stress concentration effect. The responses of the CWSSR system are greatly influenced by the width and thickness of the roof sheeting but are less influenced by the welding height.

Avantor® ACE® Wide Pore HPLC Columns for the Separation and Purification of Proteins in Biopharmaceuticals (바이오의약품의 단백질 분리 및 정제를 위한 Avantor® ACE® 와이드 포어 HPLC 컬럼 가이드)

  • Matt James;Mark Fever;Tony Edge
    • FOCUS: LIFE SCIENCE
    • /
    • no.1
    • /
    • pp.3.1-3.7
    • /
    • 2024
  • The article discusses the critical role of chromatography in the analysis and purification of proteins in biopharmaceuticals, emphasizing the importance of comprehensive characterization for ensuring their safety and efficacy. It highlights the use of Avantor® ACE® HPLC columns for the separation and purification of proteins, focusing on the analysis of intact proteins using reversed-phase liquid chromatography (RPLC) with fully porous particles. This article also details the application of different mobile phase additives, such as TFA and formic acid, and emphasizes the advantages of using type B ultra-pure silica-based columns for efficiency and peak shape in biomolecule analysis. Additionally, it addresses the challenges of analyzing intact proteins due to slow molecular diffusion and introduces the concept of solid-core (or superficially porous) particles, emphasizing their benefits over traditional porous particles for the analysis of therapeutic proteins. Furthermore, it discusses the development of Avantor® ACE® UltraCore BIO columns, specifically designed for the high-efficiency separation of large biomolecules, such as proteins, and demonstrates their effectiveness in achieving high-resolution separations, even for higher molecular weight proteins like monoclonal antibodies (mAbs). In addition, it underscores the complexity of analyzing and characterizing intact protein biopharmaceuticals, requiring a range of analytical techniques and the use of wide-pore stationary phases, operated at elevated temperatures and with relatively shallow gradients. It highlights the comprehensive range of options offered by Avantor® ACE® wide pore columns, including both fully porous and solid-core particles, bonded with a variety of complementary stationary phase chemistries to optimize selectivity during method development. The use of ultrapure and highly inert base silica is emphasized for enabling the use of lower concentrations of mobile phase modifiers without compromising analyte peak shape, particularly beneficial for LC-MS applications. Then the article concludes by emphasizing the significance of reversed-phase liquid chromatography and its compatibility with mass spectrometry as a valuable tool for the separation and analysis of intact proteins and their closely related variants in biopharmaceuticals.

  • PDF

Preparation and Application of Nanofiltration Membranes (NF막 제조 및 응용공정)

  • 이규호;오남운;제갈종건
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1998.06a
    • /
    • pp.135-153
    • /
    • 1998
  • Nanofiltration (NF) is a recently introduced term in membrane separation. In 1988, Eriksson was one of the first authors using the word 'nanofiltration' explicitly. Some years before, FilmTech started to use this term for their NF50 membrane which was supposed to be a very loose reverse osmosis membrane or a very tight ultrafiltration membrane. Since then, this term has been introduced to indicate a specific boundary of membrane technology in between ultrafiltration and reverse osmosis. The application fields of the NF membranes are very broad as follows: Demeneralizing water, Cleaning up contaminated groundwater, Ultrapure water production, Treatment of effleunts containing heavy metals, Offshore oil platforms, Yeast production, Pulp and paper mills, Textile production, Electroless copper plating, Cheese whey production, Cyclodextrin production, Lactose production. The earliest NF membrane was made by Cadotte et al, using piperazine and trimesoyl chloride as monomers for the formation of polyamide active layer of the composite type membrane. They coated very thin interfacially potymerized polyamide on the surface of the microporous polysulfone supports. The NF membrane exhibited low rejections for monovalent anions (chloride) and high rejections for bivalent anions (sulphate). This membrane was called NS300. Some of the earliest NF membranes, like the NF40 membrane of FilmTech, the NTR7250 of Nitto-Denko and the UTC20 and UTC60 of Toray, are formed by a comparable synthesis route as the NS300 membrane. Commercially available NF membranes nowadays are as follows: ASP35 (Advanced Membrane Technology), MPF21; MPF32 (Kiryat Weizmann), UTC20; UTC60; UTC70; UTC90 (Toray), CTA-LP; TFCS (Fluid Systems), NF45; NF70 (FilmTec), BQ01; MX07; HG01; HG19; SX01; SX10 (Osmonics), 8040-LSY-PVDI (Hydranautics), NF CA30; NF PES 10 (Hoechst), WFN0505 (Stork Friesland). The typical ones among the commercially available NF membranes are polyamide composite membrane consisting of interfacially polymerized polyamide active layer and microporous support. While showing high water fluxes and high rejections of multivalent ions and small organic molecules, these membranes have relatively low chemical stability. These membranes have low chlorine tolerance and are unstable in acid or base solution. This chemical instability is appearing to be a big obstacle for their applications. To improve the chemical stability, we have tried, in this study, to prepare chemically stable NF membranes from PVA. The ionomers and interfacially polymerized polyamide were used for the modification of'the PVA membranes. For the detail study of the active layer, homogeneous NF membranes made only from active layer materials were prepared and for the high performance, composite type NF membranes were prepared by coating the active layer materials on microporous polysulfone supports.

  • PDF

Optical Diagnostics of Nanopowder Processed in Liquid Plasmas

  • Bratescu, M.A.;Saito, N.;Takai, O.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.17-18
    • /
    • 2011
  • Plasma in liquid phase has attracted great attention in the last few years by the wide domain of applications in material processing, decomposition of organic and inorganic chemical compounds and sterilization of water. The plasma in liquid is characterized by three main regions which interact each - other during the plasma operation: the liquid phase, which supply the plasma gas phase with various chemical compounds and ions, the plasma in the gas phase at atmospheric pressure and the interface between these two regions. The most complex region, but extremely interesting from the fundamental, chemical and physical processes which occur here, is the boundary between the liquid phase and the plasma gas phase. In our laboratory, plasma in liquid which behaves as a glow discharge type, is generated by using a bipolar pulsed power supply, with variable pulse width, in the range of 0.5~10 ${\mu}s$ and 10 to 30 kHz repetition rate. Plasma in water and other different solutions was characterized by electrical and optical measurements. Strong emissions of OH and H radicals dominate the optical spectra. Generally water with 500 ${\mu}S/cm$ conductivity has a breakdown voltage around 2 kV, depending on the pulse width and the repetition rate of the power supply. The characteristics of the plasma initiated in ultrapure water between pairs of different materials used for electrodes (W and Ta) were investigated by the time-resolved optical emission and the broad-band absorption spectroscopy. The deexcitation processes of the reactive species formed in the water plasma depend on the electrode material, but have been independent on the polarity of the applied voltage pulses. Recently, Coherent anti-Stokes Raman Spectroscopy method was employed to investigate the chemistry in the liquid phase and at the interface between the gas and the liquid phases of the solution plasma system. The use of the solution plasma allows rapid fabrication of the metal nanoparticles without being necessary the addition of different reducing agents, because plasma in the liquid phase provides a reaction field with a highly excited energy radicals. We successfully synthesized gold nanoparticles using a glow discharge in aqueous solution. Nanoparticles with an average size of less than 10 nm were obtained using chlorauric acid solutions as the metal source. Carbon/Pt hybrid nanostructures have been obtained by treating carbon balls, synthesized in a CVD chamber, with hexachloro- platinum acid in a solution plasma system. The solution plasma was successfully used to remove the template remained after the mesoporous silica synthesis. Surface functionalization of the carbon structures and the silica surface with different chemical groups and nanoparticles, was also performed by processing these materials in the liquid plasma.

  • PDF

Analysis of EDCs by Mass Spectrometry and their Removal by Membrane Filtrations (질량분석법에 의한 내분비계 장애물질의 분석과 막 여과에 의한 제거)

  • Kim Tae-Uk;Yeon Kyeong-Ho;Cho Jaeweon;Moon Seung-Hyeon
    • Membrane Journal
    • /
    • v.15 no.4
    • /
    • pp.297-309
    • /
    • 2005
  • As a number of potential endocrine disrupting compounds (EDCs) are released into the environment, recently growing attention has been drawn to them. Therefore sensitive and reliable analytical methods are essential to monitor those compounds. In this study, complementary CC-MS and LC-MS were employed to analyze the endocrine disrupters, and the results of two methods were compared for di(2-ethylhexyl)phthalate (DEHP), benzylbutylphthalate (BBP), pentachlorophenol (PCP), and 4,4'-Isopropylidenediphenol (Bisphenol-A, or BPA). The results indicate that it was possible to lower the detection limits of EDCs by LC-MS. Also, LC-MS enabled to identify the EDCs as almost intact molecules. Furthermore, this study presented a nanofiltration membrane (MWCO 250) and a ultrafiltration membrane (MWCO 1,000) filtration system as methods far removing EDCs from drinking water containing $\gamma$-BHC, p,p'-DDE, BBP, p,p'-DDT, DEHP, PCP, and BPA. Cross-flow type nanofiltrations showed $100\%$ removal of EDCs, and the result implies that MWCO 250 nanofilter was sufficient for treatment of EDCs. The ratio of permeate flux to mass transfer coefficient of nanofiltration, high flux ultrafiltration, and low flux ultrafiltration with ultrapure water were 0.67, 3.4, and 0.44, respectively. It was found that nanofiltration and low flux ultrafiltration were operated at a diffusion dominant condition, and the high flux ultrafiltration was operated at a convection dominant condition. Furthermore, a diffusion dominant process attained reasonable rejection of EDCs. The removal in the ultrafiltration was depending on the molecular weight of an EDC, and the filtration was governed by diffusion-dominant hydrodynamic conditions.

A study on breakthrough characteristics of ion exchange bed with H- and ETAH-form resins for cation exchange in NH3 and ETA solution including trace NaCl (미량의 NaCl을 포함하는 NH3 및 ETA 용액에서 H 및 ETAH 형 수지에 대한 이온교환 파과 특성 연구)

  • Ahn, Hyun-Kyoung;Kim, Youn-Su;Park, Byung-Gi;Rhee, In-Hyoung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.6
    • /
    • pp.533-544
    • /
    • 2021
  • Ion exchange (IX) performance on the exchanger bed is essentially evaluated for the generation of ultrapure water in electronics and chemical industries and for the corrosion control in nuclear power plants. The breakthrough characteristics of IX bed with multi-component were investigated with both cation- and mixed-IX beds of H- and ETAH-form for four kinds of cation exchange resins by using the combined solution of ethanolamine (ETA) and ammonia (NH3) at trace NaCl. Unlike major components (ETAH+ and NH4+ ), the phenomena of breakthrough and overshooting at bed outlet were not observed by Na+ over the test period (> 3 times theoretical exchange capacity of IX bed). The breakthrough from H-form resin bed was sequentially reached by ETAH+ and NH4+, while the overshooting was observed for ETAH+ at the breakthrough of NH4+. NH4+ was 51.5% higher than ETAH+ in terms of the relative selectivity determined with the width of breakthrough zone. At the increased concentration of Na+ at bed inlet, the selectivity and the overshooting were decreased and increased, respectively. Na+ leakage was higher from ETAH-form resin bed and was not identical for four kinds of cation-exchange resins, which may be reduced by improving the intrinsic property of IX resin.

Urea Conversion via Enzymes Immobilized on Magnetic Microparticles (자성 미세입자에 고정된 효소를 통한 요소 전환)

  • Yeseul Park;Jieun Kwon;Seungjun Jung;Hyukjin Cho;Gounhanul Shin;Gangik Cho;Jin-Won Park;Kyung-Hyuk Lee
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.407-411
    • /
    • 2023
  • The urease is covalently immobilized on the surface of the magnetic particles to catalyze the conversion of urea to bicarbonate anion. The conversion was confirmed qualitatively using high-pressure liquid chromatography and UV/Vis spectrometry, and analyzed quantitatively with cyclic voltammetry. The amount of conversion with respect to time was measured and analyzed by the reaction rate equation to calculate a reaction rate constant of 0.0474 min-1. In the 1 to 3 cycles, a conversion percentage of over 90% was found, and it was possible to reuse the urease 8 times up to the percentage of 50%. It was also observed that the stability evaluated for storage for 30 days was maintained. As a result of this study, it can be seen that the urease covalently immobilized on the scaffold can be used for urea removal for the purpose of producing ultrapure water.