• Title/Summary/Keyword: ultrafine fiber

Search Result 21, Processing Time 0.022 seconds

Alkaline Dissolution and Dyeing Properties of Sea-island Type Ultrafine Nylon Fiber (해도형 초극세 나일론 섬유의 알칼리 용출 및 염색성)

  • Lee, Hae-Jung;Lee, Hyo-Young;Park, Eun-Ji;Choi, Yeon-Ji;Kim, Sund-Dong
    • Textile Coloration and Finishing
    • /
    • v.22 no.4
    • /
    • pp.325-331
    • /
    • 2010
  • The alkaline dissolution behavior of sea-island type ultrafine nylon fiber were dependent on the concentration of NaOH and treatment time, and the most appropriate condition for alkaline dissolution was to treat with 20g/l NaOH for 30 min at $80^{\circ}C$. The dyeing properties of sea-island type ultrafine nylon fiber and regular nylon fiber were examined with 3 different types of acid dyes in this study. The dye uptakes of ultrafine nylon fiber were higher than regular nylon fiber because of large surface area per unit mass, which increased as the dye bath pH decreased. The dyeing rates on ultrafine nylon fiber were faster and dye exhaustions were higher than regular nylon fiber, however color strength and rating of wash fastness were lower. It was also found that levelling type acid dye showed fast dyeing rate on both nylon fibers than metal-complex and milling type acid dyes.

Ultrafine Particle Collection Using an Electret Fiber with a Dipole Charge Distribution (쌍극자전하분포를 가진 정전섬유를 이용한 대전된 초미립자의 집진)

  • Lee Myong-Hwa;Otani Yoshio;Kim Jong-Ho;Kim Shin-Do
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.2
    • /
    • pp.145-153
    • /
    • 2005
  • An electret fiber with a dipole charge distribution was used to capture charged ultrafine particles in this study. Brownian diffusion and Coulombic force are the dominant collection mechanisms in the electret filtration of charged ultrafine particles. The interaction between Brownian diffusion and Coulombic force for the deposition of ultrafine particles onto a dipolarly charged fiber is studied by solving the convective diffusion equation including Coulombic force as an external force, and the numerical results are compared with the experimental data. As a result, it is shown that there is a negative interaction between Brownian diffusion and Coulombic force, i.e., Coulombic capture efficiency is reduced with decreasing Pe. These results suggest that Brownian diffusion and Coulombic capture efficiency, $\eta$$_{CD}$ is not a simple sum of Brownian diffusion efficiency, $\eta$$_{D}$ and Coulombic capture efficiency, $\eta$$_{C}$.

Dyeing Properties and Improvement of Washfastness of Ultrafine Polyester (해도형 극세사 폴리에스테르의 염색성 및 세탁견뢰도 향상에 관한 연구)

  • 김성동;이권선;이병선;안창희;김규식
    • Textile Coloration and Finishing
    • /
    • v.15 no.1
    • /
    • pp.48-55
    • /
    • 2003
  • As the polyester fiber becomes thinner, thermomigration that is the most important factor deteriorating the washfastness, is more dominant. For improving the washfastness of ultrafine polyester dyed with disperse dye, it is necessary either to decrease the amount of thermomigrated dyes on the fiber surface, or to use a disperse dye containing diester group in the coupling component. This paper is concerned to investigate the relation between the chemical structure of three disperse dyes and their dyeing properties and washfastness. The disperse dye whose molecular size is big, can dye ultrafine polyester with good build-up, and its washfastness is reasonably good. Other disperse dye which has diester group, shows the same dyeing properties as the standard disperse dye, and its washfastness is better than that of the standard disperse dye.

Effect of air-jet texturing conditions on the physical properties of split-type ultrafine P/N filaments

  • Lee Eun-Ju;Bok Jin-Seon;Ju Chang-Hwan
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1998.10a
    • /
    • pp.394-397
    • /
    • 1998
  • Characteristics of air-jet textured yarns are determined by linear density, strength, and instability together with structural properties. Such characteristics are affected by various processing parameters and supply yam properties. In this Paper, specially, we have studied on the effect of air jet texturing conditions not only on texturing characteristics but also on splitting behavior using split-type ultrafine P/N filaments and their draw textured yarns as raw materials. (omitted)

  • PDF

Particle collection characteristics of carbon fiber sheet discharge electrode by particle size and application to air cleaner (탄소섬유 시트 방전극의 입자 크기 별 집진 특성 및 공기청정기로의 응용)

  • shin, Dongho;Woo, Chang Gyu;Hong, Keejung;Kim, Hak-Joon;Kim, Yong-Jin;Han, Bangwoo
    • Particle and aerosol research
    • /
    • v.14 no.3
    • /
    • pp.81-88
    • /
    • 2018
  • The market for improving the indoor air quality is continuously increasing, and air cleaners are the representative products. As interest in indoor air quality increases, so are the ultrafine particle which are harmful to the human body. Despite its many advantages, electrostatic precipitators are less used in indoor air due to ozone production. In this study, the carbon fiber sheet was applied to the discharge electrode and compared with the conventional tungsten wire discharge electrode. The particle collection efficiency and the amount of ozone generation were measured for 10-100 nm particles. Furthermore, it was applied to commercial air purifier with electrostatic precipitator to compare particle removal performance. The carbon fiber sheet type discharge electrode generates a small amount of ozone, and thus it can be applied to improve indoor air quality.

Effect of surface etching and ultrafine fibers on sound absorption characteristics

  • Lee, Yun-Eung;Seon, Choe-Hwa;Su, Baek-Mun;Hwan, Ju-Chang
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1998.10a
    • /
    • pp.406-409
    • /
    • 1998
  • Sound absorbing materials are divided into several types according to the appearances and the characteristics. Basic mechanism of sound absorption in various sound absorbing materials is the conversion of sound energy into hat energy. Here the important elements which govern by the conversion from sound into heat depend on the type of materials. (omitted)

  • PDF