• 제목/요약/키워드: ultrafiltration membrane

Search Result 476, Processing Time 0.024 seconds

The Effect of Turbulence Promoters on the Mass Transfer in Ultrafiltration (한외여과에서의 물질전달에 대한 난류촉진물체의 영향)

  • Oh, Won-Suhk;Park, Ham-Yong;Lim, Gio-Bin;Kim, Woo-Sik
    • Membrane Journal
    • /
    • v.4 no.4
    • /
    • pp.221-231
    • /
    • 1994
  • The GR51PP(MWCO 50,000) and GR40PP(MWCO 100,000) membranes manufactured by DDS were used in ultrafiltration of dextran(Mw. : 500,000) solution in flat plate ultrafiltration cell filled with various types of turbulence promoters. The flux improvement by using turbulence promoter was higher in laminar flow region than in turbulent flow region. The maximum improvements of permeate flux were foud as 112% and 50% I laminar flow region and turbulent flow region, respectively. Also, the solute rejection of the ultrafiltration membrane was improved by turbulence promoters and its effect was significant in the high transmembrane pressure and laminar flow region. The smaller the spacer mesh size was used, the higher the flux improved, but the pressure drop in ultrafiltration cell also increased. In laminar flow region, pressure drop by the spacer was negligible, but in turbulent flow region it changed significantly depending upon the mesh size of the spacer and therefore, its mesh size must be baken into account in the design of the process. The predicted results of the modified mass transfer correlation had better agreement with experimental results than those of unmodified one, The modified mass transfer correlations for laminar and turbulent flow region are shown as follow. $N_{sh}=0.151(N_{Re})^{0.199}(N_{Sc})^{0.22}(N_{Scm})^{0.197}\;(625 $N_{sh}=0.0165(N_{Re})^{0.428}(N_{Sc})^{0.33}(N_{Scm})^{0.223}\;(5015

  • PDF

Removal of Heavy Metal Ions by Surfactant Enhanced Ultrafiltration (계면활성제 증진 한외여과에 의한 중금속 이온의 제거)

  • 안순철;김종수;이광래
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1997.10a
    • /
    • pp.114-115
    • /
    • 1997
  • 1.서론 : 중금속 및 유독한 금속물질을 함유한 기존의 폐수처리법으로는 다양한 방법이 있으나, 계면활성제를 첨가한 분리기술은 환경적인 측면과 경제적인 측면에서 타 공정에 비해 우수함이 입증된바 계속적인 연구개발이 진행되어 왔다. (생략)

  • PDF

Calcium Absorption Accelerating Effect of Chitosnn Oligosaccharides prepared by Ultrafiltration Membrane Enzymatic Reactor (한외여과막 효소반응기를 이용하여 제조한 키토산 올리고당의 칼슘흡수 촉진효과)

  • JEON You-Jin;KIM Gyu-Hyung;PARK Pyo-Jam;KIM Se-Kwon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.32 no.3
    • /
    • pp.247-251
    • /
    • 1999
  • In spite of various bio-functionalities of chitosan, the effects in vivo were still ambiguous because of its low absorption on organism. Therefore, chitosan oligosaccharides (COSs) are necessary to elucidate for an efficient utilization in vivo. COSs were prepared from chitosan using ultrafiltration membrane enzymatic reactor system with MWCO (molecular weight cut-off) 3,000 Da of membrane. Calcium absorption accelerating effect using COSs was examined by two methods, in vitro and in vivo. In vitro experiment, calcium absorption by the addition of COSs in a mixture solution of calcium and phosphate was higher approximately $50\%$ than that by control. In vivo using rats, group taken the diet contained $1\%$ COSs anil calcium chloride decreased about $75\%$ of calcium content excreted from feces, and then, showed about $15\%$ increase in breaking force of femur. These results demonstrated that COSs definitely involved in calcium metabolism in vivo.

  • PDF

Textile Wastewater Treatment by MF-UF Combined Membrane Filtration (MF-UF 분리막 복합공정에 의한 염색가공 폐수처리)

  • Yang, Jeongmok;Park, Chulhwan;Lee, Byunghwan;Kim, Sangyong
    • Clean Technology
    • /
    • v.12 no.3
    • /
    • pp.151-156
    • /
    • 2006
  • Combined membrane process of ceramic microfiltration (MF) and polymer ultrafiltration (UF) was optimized for the removal of color and total organic carbon (TOC) from textile wastewater. Membrane regeneration was performed for the efficient operation by backflushing and chemical cleaning. Flux of 10.3% increased by the pulse backflushing of 1 second every 2 minutes in ceramic microfiltration. Membrane regeneration of 97% was obtained by chemical cleaning with 0.1% sodium hydroxide in polymer ultrafiltration. The removal efficiency of TOC, color and SS (suspended solid) were 84.6%, 97.4% and 100%, respectively. The combined process was found to be suitable for the removal of color and residual organics from textile wastewater.

  • PDF

In-situ modification of PVC UF membrane by SiO2 sol in the coagulation bath during NIPS process

  • Cheng, Liang;Xu, Zhen-Liang;Yang, Hu;Wei, Yong-Min
    • Membrane and Water Treatment
    • /
    • v.9 no.5
    • /
    • pp.317-325
    • /
    • 2018
  • Polyvinyl chloride (PVC) ultrafiltration (UF) membrane was modified by silica sol in the coagulation bath during non-solvent induced phase separation (NIPS) process. The effects of silica sol concentrations on the morphology, surface property, mechanical strength and separation property of PVC UF membranes were systematically investigated. PVC membranes were characterized by Fourier transform infrared spectroscopy (FTIR), energy dispersive spectroscopy (EDS), scanning electron microscopy (SEM), contact angle goniometry and tensile strength measurement. The results showed that silica had been successfully assembled on the surface of PVC UF membrane. With the increase of silica sol concentration in the coagulation bath, the morphologies of PVC UF membranes changed from cavity structure to finger-like pore structure and asymmetric cross-section structure. The hydrophilicity and permeability of PVC UF membranes were further evaluated. When silica sol concentration was 20 wt.%, the modified PVC membrane exhibited the highest hydrophilicity with a static contact angle of $36.5^{\circ}$ and permeability of $91.8(L{\cdot}m^{-2}{\cdot}h^{-1})$. The structure of self-assemble silica had significant impact on the surface property, morphology, mechanical strength and resultant separation performance of the PVC membranes.

Preparation and Characterization of Mixed Matrix Membrane Consisting of Polyethersulfone and ZnO Nanoparticles (Polyethersulfone과 ZnO 나노입자로 조성된 혼합기질막의 제조와 특성 평가)

  • Lee, Seung-Hun;Lee, Min-Su;Youm, Kyung-Ho
    • Membrane Journal
    • /
    • v.26 no.6
    • /
    • pp.463-469
    • /
    • 2016
  • In this research, a new expectation in enhancing the PES (polyethersulfone) polymer phase inversion membrane performances with nanoparticles is proposed by using ZnO. This paper investigated the synthesis of PES phase inversion membranes including ZnO nanoparticles and evaluates the performance of these mixed matrix membranes. The PES-ZnO mixed matrix membranes were fabricated by phase inversion method using the PES-ZnO-NMP(N-methyl-1-pyrrolidone) casting solutions with low ZnO nanoparticles content of 0.375 wt%. The influence of ZnO nanoparticles on the characteristics of PES-ZnO mixed matrix membranes was investigated with scanning electron microscope observations of membrane cross-sections, contact angle measurements, tensile strength measurements, pure water flux measurements and ultrafiltration experiments of BSA solution. Those results showed that the performance advancements in comparison with the pure PES membrane without ZnO in terms of increasing hydrophilicity as well as reducing membrane fouling by adding ZnO nanoparticles even in low concentration.

Effect of Water Back-flushing Condition in Hybrid Water Treatment Process of Carbon Fiber Microfiltration Membrane and Photocatalyst (탄소섬유 정밀여과막 및 광촉매 혼성 수처리 공정에서 물 역세척 조건의 영향)

  • Park, Jin Yong;Cho, Gwang Hee
    • Membrane Journal
    • /
    • v.22 no.3
    • /
    • pp.216-223
    • /
    • 2012
  • The effect of water back-flushing period (FT) was investigated in hybrid process of carbon fiber microfiltration membrane and photocatalyst for advanced drinking water treatment in this study, and compared with the previous study using alumina ultrafiltration membrane. The FT was changed in the range of 2~10 min with fixed 10 sec of BT. Then, the FT effects on resistance of membrane fouling ($R_f$), permeate flux (J) and total permeate volume ($V_T$) were observed during total filtration time of 180 min. As decreasing FT, $R_f$ decreased and J increased, which was same with the previous result using alumina ultrafiltration membrane. The treatment efficiency of turbidity was high beyond 99.2%, and the effect of FT was not shown on treatment efficiency of turbidity, which was different with the previous result. The treatment efficiency of organic matters was the lowest value of 65.6% at NBF, and it increased as decreasing FT, which was different with the previous result, too. The reason was that the membrane fouling phenomena could show a different mechanism depending on ceramic membrane materials.

Reactive modification of PVC membranes for the improved performance

  • Jhaveri, Jainesh H.;Patel, Chetan M.;Murthy, Z.V.P.
    • Membrane and Water Treatment
    • /
    • v.9 no.6
    • /
    • pp.385-392
    • /
    • 2018
  • Poly vinyl chloride (PVC) was chemically modified, and used for ultrafiltration to analyze the performance. Non-solvent induced phase separation (NIPS) method was used to prepare membranes. The neat PVC membrane was casted and used as a control membrane. Modified membrane was prepared by reacting PVC with ethanolamine (EA) in the casting solution (labeled as CM-PVC). Pure water permeability (PWP) was evaluated by measuring pure water flux. Humic acid was used as model foulant solute to analyze flux and rejection ability of membranes. Flux and rejection data of neat and modified membranes were compared to prove the improvement in the filtration performance. The experimental results showed that for PVC and CM-PVC, PWP was calculated to be ~64 and ${\sim}143L/m^2{\cdot}h$, respectively, and the rejection of humic acid was found to be 98% and 100%, respectively. TGA was carried out to analyze the effect of chemical modification on the thermal stability of polymer. FT-IR analysis was another characterization technique used for the comparative study.

Enzyme Deactivation During Enzyme Recycling with Ultrafiltration Hollow Fibers (한외여과막을 이용한 효소재순환 시스템에서의 효소역가감소)

  • 김준석;정용섭홍석인
    • KSBB Journal
    • /
    • v.11 no.3
    • /
    • pp.347-352
    • /
    • 1996
  • The enzyme deactivation in a membrane recycling system for the simultaneous saccharification and fermentation(SSF) was studied under various temperature and pressure. The optimum molecular weight cut off(MWCO) of the ultrafiltration membrane for recycling cellulase and ${\beta}$-glucosidase was 50,000. When the cellulase was recycled continuously through the membrane system, it was not deactivated. But the activity of ${\beta}$-glucosidase was decreased with an increase in operating temperature and transmembrane pressure. After 720 minutes at $42^{\circ}C$ and 24.8 psig , the activity of ${\beta}$-glucosidase was reduced by 35% of the initial activity. Such tendencies could be well explained by the results of highly induced shear at the fiber surface of membrane when temperature and transmembrane pressure became higher.

  • PDF