• Title/Summary/Keyword: ultra-low relative humidity

Search Result 5, Processing Time 0.031 seconds

Self-reported Irritation Symptoms among Workers Exposed to Ultra-low Relative Humidity and Thionyl Chloride (극건조 환경에서 염화티오닐 동시 노출자의 자각증상 경험률)

  • Chae, Yoo Mi
    • Journal of Environmental Health Sciences
    • /
    • v.41 no.6
    • /
    • pp.412-424
    • /
    • 2015
  • Objectives: An ultra dry air environment of nearly ${\leq}2%$ RH is often required in lithium battery factories. The objective of this study is to evaluate the subjective eye, pulmonary, nose, and skin symptoms of workers exposed to ultra-low relative humidity and thionyl chloride. Methods: We recruited 274 workers using a self-reported questionnaire in March 2014. Those who worked in ultra-low relative humidity and with thionyl chloride were identified and their prevalence of symptoms was compared with that of other workers. We excluded white collar workers, researchers and other workers who were exposed to various hazard factors, and finally included 164 workers. Results: There were significant differences in the rate of self-reported eye and skin symptoms between exposure group_1 and exposure group_2. Exposure group_2 experienced more frequent eye, and skin symptoms. Multinomial logistic regression analysis for experience of dry eye symptoms and skin symptoms in exposure group_2 showed that dry eye symptoms (odds ratio [OR], 6.33, 95% confidence interval [CI], 2.19-18.24, p<0.001), and itchiness (OR, 6.45, 95% CI, 1.94-21.43, p<0.01) were the significant variables. The complaints of workers experiencing ultra-low relative humidity and thionyl chloride were high compared with other workers. Conclusion: These findings suggest that exposure to ultra-low relative humidity and thionyl chloride may be associated with more frequent eye and skin symptoms than exposure to ultra-low relative humidity alone. The current precautions to protect workers from the adverse effects of ultra-low relative humidity and thionyl chloride appear to be insufficient, indicating that additional management plans to reduce symptoms should be considered.

Friction Properties of Carbon Coated Ultra-thin Film using Taguchi Experimental Design (다구찌 실험계획법을 이용한 탄소코팅 초박막의 마찰특성)

  • 안준양;김대은;최진용;신경호
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.4
    • /
    • pp.143-150
    • /
    • 2003
  • Frictional properties of ultra-thin carbon coatings on silicon wafer were investigated based on Taguchi experimental design method. Sensitivity analysis was performed with normal load, relative humidity, deposition process, and coating thickness as the variables. It was found that despite low thickness, the carbon coating resulted in relatively low friction coefficient. Also, the frictional behavior was affected significantly by humidity and normal load.

Tribological properties of ultra-thin diamond-like carbon coating at various humidity

  • Cuong, Pham Duc;Ahn, Hyo-Sok;Kim, Choong-Hyun;Kim, Doo-In
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.161-162
    • /
    • 2002
  • This study concerns the tribological behaviors of ultra-thin DLC coating with 3 nm thickness deposited in a mixed gas of argon + 20 % hydrogen as a function of humidity. Reciprocating wear tests employing a micro wear tester were performed under various normal loads and relative humidity in air environment. The chemical composition of the original and worn surfaces were studied by Auger electron spectroscopy (AES). It showed that the ultra-thin DLC coating exhibited low friction with enough wear stability at low normal load (0.18 N) and its tribological behavior was strongly dependent on the humidity. The sample surfaces before and after the test were examined using atomic force microscopy (AFM). Capillary force and meniscus areas were discussed in order to explain the influence of humidity on the friction force.

  • PDF

Characteristics of Particle Growth and Chemical Composition of High Concentrated Ultra Fine Dusts (PM2.5) in the Air around the Power Plant (고농도 초미세먼지 출현 시 발전소 주변 대기 입자 성장 및 화학조성 특성)

  • Suji, Kang;Jinho, Sung;Youngseok, Eom;Sungnam, Chun
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.8 no.2
    • /
    • pp.103-110
    • /
    • 2022
  • Ultrafine Particle number and size distributions were simultaneously measured at rural area around the power plant in Dangjin, South Korea. New Particle formation and growth events were frequently observed during January, 2021 and classified based on their strength and persistence as well as the variation in geometric mean diameter(GMD) on January 12, 21 and 17. In this study, we investigated mechanisms of new particle growth based on measurements using a high resolution time of flight aerosol mass spectrometer(HR-ToF-AMS) and a scanning mobility particle sizer(SMPS). On Event days(Jan 12 and 21), the total average growth rate was found to be 8.46 nm/h~24.76 nm/hr. These growth rate are comparable to those reported for other urban and rural sites in South Korea using different method. Comparing to the Non-Event day(Jan 17), New Particle Growth mostly occurred when solar radiation is peaked and relative humidity is low in daytime, moreover enhanced under the condition of higher precusors, NO2 (39.9 vs 6.2ppb), VOCs(129.5 vs 84.6ppb), NH3(11 vs 4.7ppb). The HR-ToF-AMS PM1.0 composition shows Organic and Ammoniated nitrate were dominant species effected by emission source in domestic. On the other hand, The Fraction of Ammoniated sulfate was calculated to be approximately 16% and 31% when air quality is inflow from China. Longer term studies are needed to help resolve the relative contributions of each precusor species on new particle growth characteristics.

Changes in Growth and Antioxidant Phenolic Contents of Kale according to CO2 Concentration before UV-A Light Treatment (UV-A 조사 전 CO2 농도에 따른 케일의 생육과 항산화적 페놀릭 함량 변화)

  • Jin-Hui Lee;Myung-Min Oh
    • Journal of Bio-Environment Control
    • /
    • v.32 no.4
    • /
    • pp.342-352
    • /
    • 2023
  • Ultra-violet (UV) light is one of abiotic stress factors and causes oxidative stress in plants, but a suitable level of UV radiation can be used to enhance the phytochemical content of plants. The accumulation of antioxidant phenolic compounds in UV-exposed plants may vary depending on the conditions of plant (species, cultivar, age, etc.) and UV (wavelength, energy, irradiation period, etc.). To date, however, little research has been conducted on how leaf thickness affects the pattern of phytochemical accumulation. In this study, we conducted an experiment to find out how the antioxidant phenolic content of kale (Brassica oleracea var. acephala) leaves with different thicknesses react to UV-A light. Kale seedlings were grown in a controlled growth chamber for four weeks under the following conditions: 20℃ temperature, 60% relative humidity, 12-hour photoperiod, light source (fluorescent lamp), and photosynthetic photon flux density of 121±10 µmol m-2 s-1. The kale plants were then transferred to two chambers with different CO2 concentrations (382±3.2 and 1,027±11.7 µmol mol-1), and grown for 10 days. After then, each group of kale plants were subjected to UV-A LED (275+285 nm at peak wavelength) light of 25.4 W m-2 for 5 days. As a result, when kale plants with thickened leaves from treatment with high CO2 were exposed to UV-A, they had lower UV sensitivity than thinner leaves. The Fv/Fm (maximum quantum yield on photosystem II) in the leaves of kale exposed to UV-A in a low-concentration CO2 environment decreased abruptly and significantly immediately after UV treatment, but not in kale leaves exposed to UV-A in a high-concentration CO2 environment. The accumulation pattern of total phenolic content, antioxidant capacity and individual phenolic compounds varied according to leaf thickness. In conclusion, this experiment suggests that the UV intensity should vary based on the leaf thickness (age etc.) during UV treatment for phytochemical enhancement.