• Title/Summary/Keyword: ultra-low latency

Search Result 49, Processing Time 0.03 seconds

3GPP 5G Core Network: An Overview and Future Directions

  • Husain, Syed;Kunz, Andreas;Song, JaeSeung
    • Journal of information and communication convergence engineering
    • /
    • v.20 no.1
    • /
    • pp.8-15
    • /
    • 2022
  • The new 5G radio technology (NR) can provide ultra-reliable low latency communications. The supporting 5G network infrastructure will move away from the previous point-to-point network architecture to a service-based architecture. 5G can provide three new things, i.e., wider channels, lower latency and more bandwidth. These will allow 5G to support three main types of connected services, including enhanced mobile broadband, mission-critical communications, and the massive Internet of Things (IoT). In 2015, the 5th generation (5G) mobile communication was officially approved by the International Telecommunication Union (ITU) as IMT-2020. Since then, 3GPP, the international organization responsible for 5G standards, is actively developing specifications for 5G technologies. 3GPP Release 15 provides the first full set of 5G standards, and the evolution and expansion of 5G are now being standardized in Release 16 and 17, respectively. This paper provides an overview of 3GPP 5G technologies and key services.

On Lossless Interval of Low-Correlated Superposition Coding NOMA toward 6G URLLC

  • Chung, Kyuhyuk
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.3
    • /
    • pp.34-41
    • /
    • 2021
  • Recently, a lossless non-successive interference cancellation (SIC) non-orthogonal multiple access (NOMA) implementation has been proposed. Such lossless NOMA without SIC is achieved via correlated superposition coding (SC), in comparison with conventional independent SC. However, only high-correlated SC was investigated in the lossless non-SIC NOMA implementation. Thus, this paper investigates low-correlated SC, especially a lossless interval, owing to low-correlation between signals. First, for the low-correlated SC scheme, we derive the closed-form expressions for the two roots with which the lossless interval is defined. Then, simulations demonstrate that the lossless interval of low-correlated SC NOMA is enlarged, with a degraded middle interval, compared to that of high-correlated SC NOMA. Moreover, we also show that such tendency becomes stronger as the value of the correlation coefficient varies. As a result, the proposed low-correlated SC scheme could be considered as a promising correlated SC scheme, with the enlarged lossless interval in NOMA toward the future sixth-generation (6G) ultra-reliable low-latency communications (URLLC).

Study on Trusted Models and Intelligent Intrusion Detection Systems for 6G Mobile Networks (6G 환경을 고려한 트러스트 모델 및 지능형 침입 탐지 기술 동향)

  • C.H. Park;K.M. Park;J.H. Song;J.H. Kim;S.H. Kim
    • Electronics and Telecommunications Trends
    • /
    • v.39 no.5
    • /
    • pp.74-85
    • /
    • 2024
  • The advent of 6G mobile communication technologies promises to surpass the capabilities of existing 5G by offering ultra high-speed data transmission, ultra low latency, and extensive connectivity, enabling a new wave of digital transformation across various fields. However, the openness and decentralized nature of 6G systems, which enhance their flexibility and scalability, can expand the attack surface and increase security threats from cyber-attacks. In this article, we analyze the current research trends related to security in the 6G mobile communication landscape.

An Overview of Mobile Edge Computing: Architecture, Technology and Direction

  • Rasheed, Arslan;Chong, Peter Han Joo;Ho, Ivan Wang-Hei;Li, Xue Jun;Liu, William
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.10
    • /
    • pp.4849-4864
    • /
    • 2019
  • Modern applications such as augmented reality, connected vehicles, video streaming and gaming have stringent requirements on latency, bandwidth and computation resources. The explosion in data generation by mobile devices has further exacerbated the situation. Mobile Edge Computing (MEC) is a recent addition to the edge computing paradigm that amalgamates the cloud computing capabilities with cellular communications. The concept of MEC is to relocate the cloud capabilities to the edge of the network for yielding ultra-low latency, high computation, high bandwidth, low burden on the core network, enhanced quality of experience (QoE), and efficient resource utilization. In this paper, we provide a comprehensive overview on different traits of MEC including its use cases, architecture, computation offloading, security, economic aspects, research challenges, and potential future directions.

A Lightweight Software-Defined Routing Scheme for 5G URLLC in Bottleneck Networks

  • Math, Sa;Tam, Prohim;Kim, Seokhoon
    • Journal of Internet Computing and Services
    • /
    • v.23 no.2
    • /
    • pp.1-7
    • /
    • 2022
  • Machine learning (ML) algorithms have been intended to seamlessly collaborate for enabling intelligent networking in terms of massive service differentiation, prediction, and provides high-accuracy recommendation systems. Mobile edge computing (MEC) servers are located close to the edge networks to overcome the responsibility for massive requests from user devices and perform local service offloading. Moreover, there are required lightweight methods for handling real-time Internet of Things (IoT) communication perspectives, especially for ultra-reliable low-latency communication (URLLC) and optimal resource utilization. To overcome the abovementioned issues, this paper proposed an intelligent scheme for traffic steering based on the integration of MEC and lightweight ML, namely support vector machine (SVM) for effectively routing for lightweight and resource constraint networks. The scheme provides dynamic resource handling for the real-time IoT user systems based on the awareness of obvious network statues. The system evaluations were conducted by utillizing computer software simulations, and the proposed approach is remarkably outperformed the conventional schemes in terms of significant QoS metrics, including communication latency, reliability, and communication throughput.

Motor drive control development: a new approach to learning and design

  • Porobic, Vlado;Ivanovic, Zoran;Adzic, Evgenije;Vekic, Marko;Celanovic, Nikola;Oh, Hyounglok
    • Proceedings of the KIPE Conference
    • /
    • 2013.11a
    • /
    • pp.37-38
    • /
    • 2013
  • This paper presents an intuitive and powerful way to study and design motor drive control. The control of induction motors, as most widely used machines, is discussed. Thanks to ultra low latency and high fidelity Hardware-in-the-Loop systems, different aspects of up-to-date drive regulation are examined. A power stage, comprised of a grid voltage source, a rectifier, a VSC inverter and an induction motor, is emulated on the HIL platform in real time. A digital signal controller is plugged into the interface board and connected to the HIL emulation platform, without any hardware modifications. For motor control and power electronics applications, a dedicated Texas Instruments TMS320F2808 DSP is chosen. The same controller can drive an emulation platform and a real device with no modifications. Current and speed control loop test results are presented and discussed.

  • PDF

Ultra-Low Latency Infra Technology (초저지연 인프라 기술)

  • Ryoo, Y.C.;Song, J.T.;Ryoo, J.D.;Cheung, T.S.;Ko, J.S.;Youn, J.W.;Kim, S.M.
    • Electronics and Telecommunications Trends
    • /
    • v.32 no.1
    • /
    • pp.13-24
    • /
    • 2017
  • 초저지연 인프라 기술은 인터넷 및 멀티미디어 정보 교환을 목적으로 만들어져 대역폭 증대에 힘써온 범용 통신망의 한계를 초월하여 실시간 시민감형 통신 및 산업 공정 제어 계측 정보 교환을 위하여 지연을 극소화 하고 확정할 수 있는 통신 인프라를 구축하기 위한 기술이다. 본고에서는 초저지연 인프라 구축을 위한 핵심 기술인 시간 제어 네트워크 기술과 전광 네트워킹 기술을 소개하고 산업 및 연구 기관의 관련 분야 활동 상황과 국제 표준화 동향에 대해 알아본다.

  • PDF

Sequence-to-Sequence based Mobile Trajectory Prediction Model in Wireless Network (무선 네트워크에서 시퀀스-투-시퀀스 기반 모바일 궤적 예측 모델)

  • Bang, Sammy Yap Xiang;Yang, Huigyu;Raza, Syed M.;Choo, Hyunseung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.05a
    • /
    • pp.517-519
    • /
    • 2022
  • In 5G network environment, proactive mobility management is essential as 5G mobile networks provide new services with ultra-low latency through dense deployment of small cells. The importance of a system that actively controls device handover is emerging and it is essential to predict mobile trajectory during handover. Sequence-to-sequence model is a kind of deep learning model where it converts sequences from one domain to sequences in another domain, and mainly used in natural language processing. In this paper, we developed a system for predicting mobile trajectory in a wireless network environment using sequence-to-sequence model. Handover speed can be increased by utilize our sequence-to-sequence model in actual mobile network environment.

Fully parallel low-density parity-check code-based polar decoder architecture for 5G wireless communications

  • Dinesh Kumar Devadoss;Shantha Selvakumari Ramapackiam
    • ETRI Journal
    • /
    • v.46 no.3
    • /
    • pp.485-500
    • /
    • 2024
  • A hardware architecture is presented to decode (N, K) polar codes based on a low-density parity-check code-like decoding method. By applying suitable pruning techniques to the dense graph of the polar code, the decoder architectures are optimized using fewer check nodes (CN) and variable nodes (VN). Pipelining is introduced in the CN and VN architectures, reducing the critical path delay. Latency is reduced further by a fully parallelized, single-stage architecture compared with the log N stages in the conventional belief propagation (BP) decoder. The designed decoder for short-to-intermediate code lengths was implemented using the Virtex-7 field-programmable gate array (FPGA). It achieved a throughput of 2.44 Gbps, which is four times and 1.4 times higher than those of the fast-simplified successive cancellation and combinational decoders, respectively. The proposed decoder for the (1024, 512) polar code yielded a negligible bit error rate of 10-4 at 2.7 Eb/No (dB). It converged faster than the BP decoding scheme on a dense parity-check matrix. Moreover, the proposed decoder is also implemented using the Xilinx ultra-scale FPGA and verified with the fifth generation new radio physical downlink control channel specification. The superior error-correcting performance and better hardware efficiency makes our decoder a suitable alternative to the successive cancellation list decoders used in 5G wireless communication.

Mobility-Aware Service Migration (MASM) Algorithms for Multi-Access Edge Computing (멀티 액세스 엣지 컴퓨팅을 위한 Mobility-Aware Service Migration (MASM) 알고리즘)

  • Hamzah, Haziq;Le, Duc-Tai;Kim, Moonseong;Choo, Hyunseung
    • Journal of Internet Computing and Services
    • /
    • v.21 no.4
    • /
    • pp.1-8
    • /
    • 2020
  • In order to reach Ultra-Reliable Low-Latency communication, one of 5G aims, Multi-access Edge Computing paradigm was born. The idea of this paradigm is to bring cloud computing technologies closer to the network edge. User services are hosted in multiple Edge Clouds, deployed at the edge of the network distributedly, to reduce the service latency. For mobile users, migrating their services to the most proper Edge Clouds for maintaining a Quality of Service is a non-convex problem. The service migration problem becomes more complex in high mobility scenarios. The goal of the study is to observe how user mobility affects the selection of Edge Cloud during a fixed mobility path. Mobility-Aware Service Migration (MASM) is proposed to optimize service migration based on two main parameters: routing cost and service migration cost, during a high mobility scenario. The performance of the proposed algorithm is compared with an existing greedy algorithm.