• Title/Summary/Keyword: ultra-high-resolution seismic survey

Search Result 3, Processing Time 0.015 seconds

Development of Digital Streamer System for Ultra-high-resolution Seismic Survey (초고해상 탄성파 탐사를 위한 디지털 스트리머 시스템 개발)

  • Shin, Jungkyun;Ha, Jiho;Yoon, Seongwoong;Im, Taesung;Im, Gwansung
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.3
    • /
    • pp.129-139
    • /
    • 2022
  • Analog-based streamers for ultra-high-resolution seismic surveys are capable of additional noise ingress in water, but the specifications cannot be expanded through interconnections. Foreign-produced digital streamers have been introduced and used primarily at domestic research institutes; however, the cost is high and smooth maintenance is challenging. This study investigates the localization of ultra-high-resolution digital streamers capable of high-resolution imaging of a geological structure. A digital streamer capable of 24-bit, 10 kHz digital sampling of up to 64 channel data was developed through research and development. Various quantitative specifications of the system were designed and developed close to the benchmark model, Geometrics' GeoEel streamer, and the number of modules that make up the system was drastically reduced, reducing development costs and making it easier to use. The field applicability of the developed streamer system was evaluated in an in situ experiment conducted in the waters around the Port of Yeong-il Bay in Pohang in April 2022.

Development of 3D Reverse Time Migration Software for Ultra-high-resolution Seismic Survey (초고해상 탄성파 탐사를 위한 3차원 역시간 구조보정 프로그램 개발)

  • Kim, Dae-sik;Shin, Jungkyun;Ha, Jiho;Kang, Nyeon Keon;Oh, Ju-Won
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.3
    • /
    • pp.109-119
    • /
    • 2022
  • The computational efficiency of reverse time migration (RTM) based on numerical modeling is not secured due to the high-frequency band of several hundred Hz or higher for data acquired through a three-dimensional (3D) ultra-high-resolution (UHR) seismic survey. Therefore, this study develops an RTM program to derive high-quality 3D geological structures using UHR seismic data. In the traditional 3D RTM program, an excitation amplitude technique that stores only the maximum amplitude of the source wavefield and a domain-limiting technique that minimizes the modeling area where the source and receivers are located were used to significantly reduce memory usage and calculation time. The program developed through this study successfully derived a 3D migration image with a horizontal grid size of 1 m for the 3D UHR seismic survey data obtained from the Korea Institute of Geoscience and Mineral Resources in 2019, and geological analysis was conducted.

Benchmark Test Study of Localized Digital Streamer System (국산화 디지털 스트리머 시스템의 벤치마크 테스트 연구)

  • Jungkyun Shin;Jiho Ha;Gabseok Seo;Young-Jun Kim;Nyeonkeon Kang;Jounggyu Choi;Dongwoo Cho;Hanhui Lee;Seong-Pil Kim
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.2
    • /
    • pp.52-61
    • /
    • 2023
  • The use of ultra-high-resolution (UHR) seismic surveys to preceisly characterize coastal and shallow structures have increased recently. UHR surveys derive a spatial resolution of 3.125 m using a high-frequency source (80 Hz to 1 kHz). A digital streamer system is an essential module for acquiring high-quality UHR seismic data. Localization studies have focused on reducing purchase costs and decreasing maintenance periods. Basic performance verification and application tests of the developed streamer have been successfully carried out; however, a comparative analysis with the existing benchmark model was not conducted. In this study, we characterized data obtained by using a developed streamer and a benchmark model simultaneously. Tamhae 2 and auxiliary equipment of the Korea Institute of Geoscience and Mineral Resources were used to acquire 2D seismic data, which were analyzed from different perspectives. The data obtained using the developed streamer differed in sensitivity from that obtained using benchmark model by frequency band.However, both type of data had a very high level of similarity in the range corresponding to the central frequency band of the seismic source. However, in the low frequency band below 60 Hz, data obtained using the developed streamer showed a lower signal-to-noise ratio than that obtained using the benchmark model.This lower ratio can hinder the quality in data acquisition using low-frequency sound sources such as cluster air guns. Three causes for this difference were, and streamers developed in future will attempt to reflect on these improvements.