• Title/Summary/Keyword: ultra-fine powders

Search Result 81, Processing Time 0.036 seconds

Synthesis of Ultrafine and Less Agglomerated TiCN Powders by Magnesiothermic Reduction (마그네슘 열환원에 의한 저응집 초미립 TiCN 분말합성)

  • Lee, Dong-Won
    • Journal of Powder Materials
    • /
    • v.19 no.5
    • /
    • pp.356-361
    • /
    • 2012
  • The ultra-fine and less agglomerated titanium carbonitride particles were successfully synthesized by magnesiothermic reduction with low feeding rate of $TiCl_4+1/4C_2Cl_4$ solution. The sub-stoichiometric titanium carbide ($TiC_{0.5{\sim}0.6}$) particles were produced by reduction of chlorine component by liquid magnesium at $800^{\circ}C$ of gaseous $TiCl_4+1/4C_2Cl_4$ and the heat treatments in vacuum were performed for 5 hours to remove the residual magnesium and magnesium chloride mixed with produced $TiC_{{\sim}0.5}$. The final $TiC_{{\sim}0.5}N_{0{\sim}0.5}$ particle with near 100 nm in mean size and high specific surface area of $65m^2/g$ was obtained by nitrification under nitrogen gas at $1,150^{\circ}C$ for 2 hrs.

Development of Tungsten Dispersed Copper Based Alloy and its Physical Property

  • Mishima, Akira;Sakaguchi, Shigeya
    • Journal of Powder Materials
    • /
    • v.5 no.4
    • /
    • pp.329-333
    • /
    • 1998
  • Copper-10 wt. % tungsten alloyed powder was obtained by co-reduction of mixed tungsten-trioxide and copper oxide powders at 973 K for 7.2 Ks. In the alloy obtained by pressure-assisted sintering of this co-reduced powder, ultra fine tungsten particles (about 100nm) were dispersed uniformly in the copper matrix. At room temperature, the hardness of this alloy was Hv151 and the electrical conductivity was 85% IACS. After annealing at 1173 K for 3.6 Ks, the hardness and electrical conductivity were Hv147 and 84% IACS, respectively, and were same as before annealing. It was confirmed that the hardness and electrical conductivity of this alloy were hardly influenced by annealing condition since the microstructure of this alloy is highly stabilized.

  • PDF

Micro Metal Injection Molding Using Hybrid Micro/Nano Powders

  • Nishiyabu, Kazuaki;Kakishita, Kenichi;Osada, Toshiko;Tanaka, Shigeo
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.36-37
    • /
    • 2006
  • This study aims to investigate the usage of nano-scale particles in a micro metal injection molding ($\mu$-MIM) process. Nanoscale particle is effective to improve transcription and surface roughness in small structure. Moreover, the effects of hybrid micro/nano particles, Cu/Cu and SUS/Cu were investigated. Small dumbbell specimens were produced using various feedstocks prepared by changing binder content and fraction of nano-scale Cu particle (0.3 and $0.13{\mu}m$ in particle size). The effects of adding the fraction of nano-scale Cu powder on the melt viscosity of the feedstock, microstructure, density and tensile strength of sintered parts were discussed.

  • PDF

A Study on the Synthesis of High-Purity ${\alpha}-Al_2O_3$ Ultra-Fine Powders by Wet Chemical Method (습식 합성법에 의한 고순도 ${\alpha}-Al_2O_3$ 미세분말의 합성 연구)

  • Jin-Ho Choy;Jong-Seok Yoo;Yang-Su Han;Joon Kim;Hyeon-Kook Lee;Hyuk-Nyun Kim
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.275-279
    • /
    • 1991
  • Ultra-fine alumina, ${\alpha}-Al_2O_3$, with ${\phi}$ = 0.1∼0.5 ${\mu}$m was obtained from pure ammonium aluminum sulfate(alum) as the thermal decomposition product. Pure alum(> 99.7%) could be prepared by the precepitation and the successive recrystallization in an acidic aqueous solution at pH = 1.5∼2.5, which was theoretically predicted by only considering the concentrations of hydroxide and carbonate for aluminum and sodium in the solution, and also experimentally confirmed as the optimum precepitation condition for alum without forming any impurities like aluminum hydroxide or sodium one.

  • PDF

Grinding Kinetics of Calcite, Pyrophyllite and Talc During Stirred Ball Milling - Consideration of Selection Function (교반 볼밀에 의한 방해석, 납석, 활석의 분쇄 시 분쇄속도론에 관한 연구 - 선택함수의 고찰)

  • Choi, Hee-Kyu;Kim, Seong-Soo;Hwang, Jin-Yeon
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.2 s.52
    • /
    • pp.135-145
    • /
    • 2007
  • The needs for the ultra fine particles have been increased in preparation field of raw powders such as fine ceramics and high functional products. In this study, a series of wet grinding experiments were carried out on inorganic powders such as calcite, pyrophyllite and talc by a stirred ball mill. The particle size distribution of ground products of each test material fur a given grinding time was found to be expressed by the grinding rate (selection function) which was obtained from the grinding kinetics analysis. The median diameter decreased from 6.49 to $0.47{\mu}m$ in calcite, and decreased from 3.91 to $1.14{\mu}m$ in pyrophyllite. However, in talc, median diameter was decreased a little bit from 10.30 to $6.67{\mu}m$. The grinding rate changing on calcite and pyriphyllite were similar at the same conditions. However, in the case of talc, it was observed that the grinding rate was not increased compared to other samples.

Binderless Consolidation of Fine Poly-Si Powders for the Application as Photovoltaic Feedstock (태양전지(太陽電池) 원재료(原材料)로 사용(使用)하기 위한 폴리실리콘 미세분말(微細粉末)의 무점결제(無粘結劑) 성형(成形))

  • Shin, Je-Sik;Kim, Dae-Suk;Kim, Ki-Young;Shon, In-Jin;Moon, Byung-Moon
    • Resources Recycling
    • /
    • v.18 no.1
    • /
    • pp.38-43
    • /
    • 2009
  • In this study, binderless consolidation processes of ultra foe Si powder, by-products of making high purity poly-Si in the current method, were systematically investigated for use as economical solar-grade feedstock. The average diameter of the silicon powder was $7.8{\mu}m$. The main contaminants of the fine silicon powder were $SiO_2$ type oxide and humidity. The chemical pretreatment using the HF solution was observed to be effective for the improvement of the compactability of the silicon powder and the density ratio and the strength of the silicon powder compacts. The yield of the binder-free consolidation process increased by 20% under a vacuum condition. In as-received state, the silicon powder were not pure enough to be used as solar grade feed-stock material. After the dry chemical treatments, a sufficiently high purity above solar-grade was able to be achieved.

Effect of Sintering Temperature on the High Temperature Oxidation of Fe-Cr-Al Powder Porous Metal Manufactured by Electrospray Process (정전 분무법을 이용하여 제조된 Fe-Cr-Al 분말 다공체 금속의 고온 산화에 미치는 소결 온도의 영향)

  • Oh, Jae-Sung;Kong, Young-Min;Kim, Byoung-Kee;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.19 no.6
    • /
    • pp.435-441
    • /
    • 2012
  • A new manufacturing process of Fe-Cr-Al powder porous metal was attempted. First, ultra-fine fecralloy powders were produced by using the submerged electric wire explosion process. Evenly distributed colloid (0.05~0.5% powders) was dispersed on PU (Polyurethane) foam through the electrospray process. And then degreasing and sintering processes were conduced. In order to examine the effect of sintering temperature in process, pre-samples were sintered for two hours at temperatures of $1350^{\circ}C$, $1400^{\circ}C$, $1450^{\circ}C$, and $1500^{\circ}C$, respectively, in $H_2$ atmospheres. A 24-hour TGA (thermo gravimetric analysis) test was conducted at $1000^{\circ}C$ in a 79% $N_2$+21% $O_2$ to investigate the high temperature oxidation behavior of powder porous metal. The results of the high temperature oxidation tests showed that oxidation resistance increased with increasing sintering temperature (2.57% oxidation weight gain at $1500^{\circ}C$ sintered specimen). The high temperature oxidation mechanism of newly manufactured Fe-Cr-Al powder porous metal was also discussed.

Effect of Cell Size on the High Temperature Oxidation Properties of Fe-Cr-Al Powder Porous Metal Manufactured by Electro-spray Process (정전 분무 공정으로 제조된 Fe-Cr-Al 분말 다공체 금속의 고온 산화 특성에 미치는 기공 크기의 영향)

  • Oh, Jae-Sung;Kong, Young-Min;Kim, Byoung-Kee;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.21 no.1
    • /
    • pp.55-61
    • /
    • 2014
  • Fe-Cr-Al powder porous metal was manufactured by using new electro-spray process. First, ultra-fine fecralloy powders were produced by using the submerged electric wire explosion process. Evenly distributed colloid (0.05~0.5% powders) was dispersed on Polyurethane foam through the electro-spray process. And then degreasing and sintering processes were conduced. In order to examine the effect of cell size ($200{\mu}m$, $450{\mu}m$, $500{\mu}m$) in process, pre-samples were sintered for two hours at temperature of $1450^{\circ}C$, in $H_2$ atmospheres. A 24-hour thermo gravimetric analysis test was conducted at $1000^{\circ}C$ in a 79% $N_2$ + 21% $O_2$ to investigate the high temperature oxidation behavior of powder porous metal. The results of the high temperature oxidation tests showed that oxidation resistance increased with increasing cell size. In the $200{\mu}m$ porous metal with a thinner strut and larger specific surface area, the depletion of the stabilizing elements such as Al and Cr occurred more quickly during the high-temperature oxidation compared with the 450, $500{\mu}m$ porous metals.

Synthesis of TiC/Co Composite Powder by the Carbothermal Reduction Process (환원/침탄공정에 의한 TiC/Co 복합분말 합성)

  • Lee, Gil-Geun;Ha, Gook-Hyun
    • Journal of Powder Materials
    • /
    • v.16 no.5
    • /
    • pp.310-315
    • /
    • 2009
  • Ultra-fine TiC/Co composite powder was synthesized by the carbothermal reduction process without wet chemical processing. The starting powder was prepared by milling of titanium dioxide and cobalt oxalate powders followed by subsequent calcination to have a target composition of TiC-15 wt.%Co. The prepared oxide powder was mixed again with carbon black, and this mixture was then heat-treated under flowing argon atmosphere. The changes in the phase, mass and particle size of the mixture during heat treatment were investigated using XRD, TG-DTA and SEM. The synthesized oxide powder after heat treatment at 700$^{\circ}C$ has a mixed phase of TiO$_2$ and CoTiO$_3$ phases. This composite oxide powder was carbothermally reduced to TiC/Co composite powder by the solid carbon. The synthesized TiC/Co composite powder at 1300$^{\circ}C$ for 9 hours has particle size of under about 0.4 $\mu$m.

A Study on the Thermal and Electrical Properties of Fabricated Mo-Cu Alloy by Spark Plasma Sintering Method (방전 플라즈마 소결법으로 제작한 Mo-Cu 합금의 열적, 전기적 특성)

  • Lee, Han-Chan;Lee, Boong-Joo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.11
    • /
    • pp.1600-1604
    • /
    • 2017
  • Mo-Cu alloys have been widely used for heat sink materials, vacuum technology, automobile and many other applications due to their excellent physical and electronic properties. Especially, Mo-Cu composites with 5~20 wt% copper are widely used for the heavy duty service contacts due to their excellent properties like low coefficient of thermal expansion, wear resistance, high temperature strength and prominent electrical and thermal conductivity. In most of the applications, high dense Mo-Cu materials with homogeneous microstructure are required for high performance, which has led in turn to attempts to prepare ultra-fine and well-dispersed Mo-Cu powders in different ways, such as spray drying and reduction process, electroless plating technique, mechanical alloying process and gelatification-reduction process. However, most of these methods were accomplished at high temperature (typically degree), resulting in undesirable growth of large Cu phases; furthermore, these methods usually require complicated experimental facilities and procedure. In this study, Mo-Cu alloying were prepared by planetary ball milling (PBM) and spark plasma sintering (SPS) and the effect of Cu with contents of 5~20 wt% on the microstructure and properties of Mo-Cu alloy has been investigated.