• 제목/요약/키워드: ultra-fine powders

검색결과 81건 처리시간 0.029초

Rapid Sintering Process of Ultra Fine WC-Co Hard Materials by High-Frequency Induction Heating

  • Kim, H.C;Oh, D.Y.;Jeong, J.W.;Shon, I.J.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2003년도 international symposium on advanced powder metallurgy
    • /
    • pp.39-40
    • /
    • 2003
  • 1) Using a developed high-frequency induction heated sintering method, the rapid densification of WC-Co hard materials was accomplished using ultra fine powders with 260 nm size within 1 minute. 2) The relative density of the composite was 99.5% for the applide pressure of 60MPa and the induced current for 90% output of total capacity. 3) The grain size of WC-Co hard materials is about 260nm and the average thickness of the binder phase determined is about 11nm. The fracture toughness and the hardness of this work 12 $MPa{\cdot}nm^2$, respectively. 4) Using pressureless sintering, we produced dense WC-Co hard materials with a relative density of 97% without applying pressure.

  • PDF

Synthesis of Oxide Ceramic Powders by Polymerized Organic-Inorganic Complex Route

  • Lee, Sang-Jin;Lee, Chung-Hyo;Waltraud M. Kriven
    • 한국결정성장학회:학술대회논문집
    • /
    • 한국결정성장학회 2000년도 Proceedings of 2000 International Nano Crystals/Ceramics Forum and International Symposium on Intermaterials
    • /
    • pp.151-163
    • /
    • 2000
  • A polymerized organic-inorganic complexation route is introduced for the synthesis of oxide ceramic powders. Polyvinyl alcohol was used as the organic carrier for precursor ceramic gel. Porous and soft powders, which have a high specific surface area, were obtained after calcinating the aerated precursors. The PVA content and its degree of polymerization had a significant influence on the homogeneity of the final powder. In particular, attrition milling process with the porous powder resulted in ultra-fine particles. In the case of the preparation of cordierite powder, nano-size powder, which has a high specific surface area of 181 ㎡/g, was obtained by the milling process. The complexation route was also applied to the synthesis of unstable phase in room temperature like beta-cristobalite, high temperature form of silica.

  • PDF

고상연소반응법에 의한 나노텅스텐분말의 합성 (Synthesis of nanometric tungsten powders by solid state combustion method)

  • ;이종현;원창환
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2003년도 추계학술발표강연 및 논문개요집
    • /
    • pp.93-93
    • /
    • 2003
  • Tungsten and tungsten heavy alloys have widespread application as radiation shielding devices and heavy duty electrical contacts. High density and good room temperature mechanical properties have generated interest in evaluating tungsten and tungsten alloys as kinetic energy penetrators against armor. Nowdays ultra fine-grained tungsten powders are in great interest because higly dense structures can be obtained at low temperature, pressure and lower sintering time. Several physical md chemical methods are available for the synthesis of nanometric metal Powders: ball milling, laser abalation, vapor condensation, chemical precipitation, metallic wire explosion i.e. However production rates of the above mentioned methods are low and further efforts are needed to find out large-scale synthesis methods. From this point of view solid state combustion method ( known as SHS) represents undoubted interest.

  • PDF

습식 및 수열합성법에 의한 Hydroxyapatite의 합성에 관한 연구 (A Study of Hydroxyapatite Synthesis by Wet-direct and Hydrothermal Synthesis)

  • 전성용;김홍기;이경희;이병하
    • 한국세라믹학회지
    • /
    • 제30권3호
    • /
    • pp.215-221
    • /
    • 1993
  • The Hydroxyapatite powders were prepared by Wet-direct and Hydrothermal synthesis using Ca(NO3)2.4H2O and (NH4)2.HPO4.Stoichiometric and good cristalline HAp powders were obtained 9$0^{\circ}C$ by wet-direct process. The aspect ratio of HAp powders prepared by hydrothermal synthesis was increased with increasing synthetic temperature. The HAp particles obtained at 20$0^{\circ}C$ for 10hr were needle shaped ultra fine crystals, about 100nm in size. Small amount of TCP was obtained above 80$0^{\circ}C$ after heat-treatment of hydrothermally synthesized HAp but good crystalline HAp phase was maintained up to 120$0^{\circ}C$ as the primary phase.

  • PDF

기계적합금화 방법에 의한 Nanostructured W-Cu 합금의 제조 및 물성연구(I) (On Properties and Synthesis of Nanostructured W-Cu Alloys by Mechanical Alloying(I))

  • 김진천
    • 한국분말재료학회지
    • /
    • 제4권2호
    • /
    • pp.122-132
    • /
    • 1997
  • Nanostructured(NS) W-Cu composite powders of about 20~30 nm grain size were synthesized by mechanical alloying. The properties of NS W-Cu powder and its sintering behavior were investigated. It was shown from X-ray diffraction and TEM analysis that the supersaturated solid solution of Cu in W was not formed by the mechanical alloying of mixed elemental powders, but the mixture of W and Cu particles with nanosize grains, i.e., the nanocomposite powder was attained. Nanocomposite W-20wt%Cu and W-30wt%Cu powders milled for 100 h were sintered to the relative density more than 96% and 98%, respectively, by sintering at 110$0^{\circ}C$ for 1 h in $H_2$. Such a high sinterability was attributed to the high homogeneous mixing and ultra-fine structure of W and Cu phases as well as activated sintering effect by impurity metal introduced during milling.

  • PDF

Magnetic Pulsed Compaction(MPC)법으로 성형된 Cu 나노 분말 성형체의 미세구조 및 기계적 특성 (Nanostructures and Mechanical Properties of Copper Nano Powder Compacted by Magnetic Pulsed Compaction (MPC) Method)

  • 이근희;김민정;김경호;이창규;김흥회
    • 한국분말재료학회지
    • /
    • 제9권2호
    • /
    • pp.124-132
    • /
    • 2002
  • Nano Cu powders, synthesized by Pulsed Wire Evaporation (PWE) method, have been compacted by Magnetic Pulsed Cojpaction(MPC) method. The microstructure and mechanical properties were analyzed. The optimal condition for proper mechanical properties with nanostructure was found. Both pure nano Cu powders and passivated nano Cu powders were compacted, and the effect of passivated layer on the mechanical properties was investigated. The compacts by MPC, which had ultra-fine and uniform nanostructure, showed higher density of 95% of theoretical density than that of static compaction. The pur and passivated Cu compacted at $300^{\circ}C$ exhibited maximum hardnesses of 248 and 260 Hv, respectively. The wear resistance of those compacts corresponded to the hardness.

Morphology, Phase Contents, and Chemical Composition of Nanopowders Produced by the Electrical Explosion of Tin-Lead Alloy Wires

  • Kwon, Young-Soon;P. Ilyin, Alexander;V. Tichonov, Dmitrii
    • 한국분말재료학회지
    • /
    • 제10권3호
    • /
    • pp.157-160
    • /
    • 2003
  • Phase contents and elemental composition of ultradispersed powders obtained by the electrical explosion of tin-leadalloy powders are investigated. It is demonstrated that during the explosion and subsequent cooling, surface layers of powder particles are enriched in lead compared to the initial alloy. The thermal stability of powders oxidizing in air is also investigated.

산화물을 첨가한 Ag-Pd 전극의 제조 (Synthesis of Ag-Pd Electrode having Oxide Additive)

  • 이재석;이동윤;송재성;김명호
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 하계학술대회 논문집 Vol.4 No.2
    • /
    • pp.735-738
    • /
    • 2003
  • Downsizing electronics requires precision position control with an accuracy of sub-micron order, which demands development of ultra-fine displacive devices. Piezoelectric transducer is one of devices transferring electric field energy into mechanical energy and being capable for fine displacement control. The transducer has been widely used as fine Position control device Multilayer piezoelectric actuator, one of typical piezo-transducer, is fabricated by stacking alternatively ceramic and electrode layers several hundred times followed by cofiring process. Electrode material should be tolerable in the firing process maintaining at ceramic-sintering temperatures up to $1100{\sim}1300^{\circ}C$. Ag-Pd can be used as stable electrode material in heat treatment above $960^{\circ}C$. Besides, adding small quantity ceramic powder allow the actuator to be fabricated in a good shape by diminishing shrinkage difference between ceramic and electrode layers, resulting in avoidance of crack and delamination at and/or nearby interface between ceramic an electrode layers. This study presents synthesis of nano-oxide-added Ag/Pd powders and its feasibility to candidate material tolerable at high temperature. The powders were formed in a co-precipitation process of Ag and Pd in nano-oxide-dispersed solution where Ag and Pd precursors are melted in $HNO_3$ acid.

  • PDF

초 미세조직 Al81Si19 합금분말 압출재의 미세조직과 기계적 성질에 미치는 압출온도의 영향 (The Effect of Extrusion Temperatures on Microstructures and Mechanical Properties of Ultra-Fine Structured and Extruded Al81Si19 Alloys)

  • 이태행;홍순직
    • 한국분말재료학회지
    • /
    • 제10권5호
    • /
    • pp.325-332
    • /
    • 2003
  • The effect of extrusion temperature on the microstructure and mechanical properties was studied in gas atomized TEX>$Al_{81}Si_{19}$ alloy powders and their extruded bars using SEM, tensile testing and wear testing. The Si particle size of He-gas atomized powder was about 200-800 nm. Each microstructure of the extruded bars with extrusion temperature (400, 450 and 50$0^{\circ}C$) showed a homogeneous distribution of primary Si and eutectic Si particles embedded in the Al matrix and the particle size varied from 0.1 to 5.5 ${\mu}m$. With increasing extrusion temperature from 40$0^{\circ}C$ to 50$0^{\circ}C$, the ultimate tensile strength (UTS) decreased from 282 to 236 ㎫ at 300 K and the specific wear increased at all sliding speeds due to the coarse microstructure. The fracture behavior of failure in tension testing and wear testing was also studied. The UTS of extrudate at 40$0^{\circ}C$ higher than that of 50$0^{\circ}C$ because more fine Si particles in Al matrix of extrudate at 40$0^{\circ}C$ prevented crack to propagate.

Fundamental Aspects of Resistance Sintering under Ultrahigh Pressure Consolidation

  • Zhou, Zhangjian;Kim, Ji-Soon;Yum, Young-Jin
    • 한국분말재료학회지
    • /
    • 제19권1호
    • /
    • pp.19-24
    • /
    • 2012
  • The consolidation results of fine tungsten powders, W-Cu composite and W/Cu FGM by using a novel method combining resistance sintering with ultra high pressure have been reviewed. The densification effects of the consolidation parameters, including pressure, input power and sintering time, have been investigated. The sintering mechanism of this method was quite different from other sintering methods. Particle rearrangement, sliding, distortion and crushing due to the ultra high pressure are the dominant mehanisms at the initial stage, then the dominant sintering mechanisms are transient arc-fused processes controlled by the input power.