• Title/Summary/Keyword: ultra violet

Search Result 410, Processing Time 0.025 seconds

Improved Stability of GaN-based Hydrogen Sensor with SnO2 Nanoparticles/Pd Catalyst Layer Using UV Illumination (자외선 조사를 이용한 SnO2 나노입자/Pd 촉매층을 갖는 GaN 기반 수소 센서의 안정성 개선 연구)

  • Won-Tae Choi;Hee-Jae Oh;Jung-Jin Kim;Ho-Young Cha
    • Transactions on Semiconductor Engineering
    • /
    • v.1 no.1
    • /
    • pp.9-13
    • /
    • 2023
  • An AlGaN/GaN heterojunction-based hydrogen sensor with SnO2 nanoparticles/Pd catalyst layer was fabricated for room-temperature hydrogen detection. The fabricated sensor exhibited unstable drift in standby current when it was operated at room temperature. The instability in the sensing signal was dramatically improved when the sensor was operated under UV illumination.

Characterization of nano-structure pyrolytic char for smart and sustainable nanomaterials

  • N. K. Karthikeyan;S. Elavenil
    • Advances in nano research
    • /
    • v.16 no.1
    • /
    • pp.53-69
    • /
    • 2024
  • Advancements in the technology of building materials has led to diverse applications of nanomaterials with the aim to monitor concrete structures. While there are myriad instances of the use of nanoparticles in building materials, the production of smart nano cement-composites is often expensive. Thereupon, this research aims to discover a sustainable nanomaterial from tyre waste using the pyrolysis process as part of the green manufacturing circle. Here, Nano Structure Tyre-Char (NSTC) is introduced as a zero-dimension carbon-based nanoparticle. The NSTC particles were characterized using various standard characterization techniques. Several salient results for the NSTC particles were obtained using microscopic and spectroscopic techniques. The size of the particles as well as that of the agglomerates were reduced significantly using the milling process and the results were validated through a scanning electron microscope. The crystallite size and crystallinity were found to be ~35nm and 10.42%, respectively. The direct bandgap value of 5.93eV and good optical conductivity at 786 nm were obtained from the ultra violet visible spectroscopy measurements. The thermal analysis reveals the presence of a substantial amount of carbon, the rate of maximum weight loss, and the two stages of phase transformation. The FT-Raman confirms the presence of carboxyl groups and a ID/IG ratio of 0.83. Water contact angle around 140° on the surface implies the highly hydrophobic nature of the material and its low surface energy. This characteristic process assists to obtain a sustainable nanomaterial from waste tyres, contributing to the development of a smart building material.

Dissolution Behaviors of Sericin in Cocoon Shell on the Fluorescence Colors (누에고치층의 형광색에 따른 Sericin의 용해성)

  • 손승종;남중희
    • Journal of Sericultural and Entomological Science
    • /
    • v.30 no.1
    • /
    • pp.33-39
    • /
    • 1988
  • In the case of white cocoon, the fluorescence colors are classified as a yellowish fluorescence cocoon(Y.F.C.) and a violet fluorescence cocoon(V.F.C.) by exposing to ultra-violet ray. Accordingly, experiments were carried out to investigate the difference of sericin behaviors between Y.F.C. and V.F.C. by measuring the sericin solubility, surface tension and viscosity of the sericin solution. Also, the reelability of two different type of cocoons was investigated in the silk reeling process. The results were summarized as follows; 1. The sericin solubility of Y.F.C. shell is higher than that of V.F.C. shell with the dissolution temperature and time. It is shown that the sericin solubility curves of Y.F.c. and V.F.C. are similar in shape, but the difference of sericin solubility between Y.F.C. and V.F.C. is more significant at higher bath temperature. 2. The initial sericin dissolution curves of Y.F.C. and V.F.C. cocoon shell can be divided by four parts within the range of dissolving time from 5 minutes to 60 minutes. The initial dissolution velocity of Y.F.C. shell is faster than that of V.F.C. but the velocity difference is negligible after 30 minutes of dissolving time. 3. The gelation of V.F.C. sericin solution is faster than that of Y.F.C. at early stage(in the range of 15 minutes to 60 minutes). 4. In the silk reeling process, the reelability of Y.F.C. is better than that of V.F.C. with about 11%. This is mainly due to the higher sericin solubility in Y.F.C. followed by the fast dissolution velocity.

  • PDF

Removal of Volatile Organic Compounds by Photo-Catalytic Oxidation

  • Lee, Byeong-Kyu;Jung, Kwang-Ryun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.E
    • /
    • pp.39-46
    • /
    • 2000
  • Volatile Organic Compounds (VOCs) are considered as the precursors of atmospheric ozone and photochemical smog formation. In particular, chemical plants have produced a lot of VOCs and thus they have been forced to reduce or remove air emissions from the on-site chemical facilities. For the effective removal of VOCs produced in the chemical plants, the authors employed a titanium oxide(TiO$_2$) mediated photo-catalytic oxidation method. The initiation methods employed in this study to produce oxygen radicals for th photo-catalytic oxidation of the VOCs were Ultra-Violet(UV), Non-Thermal Plasma(NTS), and a combination of Uv and NTP. This study focused on a comparison of the removal efficiencies of VOCs as a function of the initiation method such as NTP and/or UV techniques. Removal efficiency change of VOCs as was investigated as a function of the wavelength of the UV lamp(254, 302, and 365 nm) and the degree of TiO$_2$ coating (10 and 30%). In this study, it was identified that removal efficiencies if the VOCs under the normal air environment were much better than those under the nitrogen gas environment containing small amount of oxygen. Removal efficiency by NTP technique was much better than the UV or the combination of UV and NTP techniques. In a comparison if UV wavelengths employed, it was found that shorter wavelength showed better removal efficiency, compared with longer ones. When the removal efficiencies of VOCs were compared in terms of the degree of TiO$_2$ coating, the higher TiO$_2$coating showed better removal efficiency that the lower TiO$_2$ coating

  • PDF

The Psycho-physiological Response of Polyethylene Terephthalate Irradiated by Ultra-Violet: Subjective Fabric Hand and Wear Comfort

  • Choi, Hae-Young;Lee, Jung-Soon
    • Fibers and Polymers
    • /
    • v.7 no.4
    • /
    • pp.442-445
    • /
    • 2006
  • The purpose of this study was to compare the subjective fabric hand evaluation and wear comfort of PET treated by Ultraviolet and to evaluate the subjective results from the investigation of microclimate temperature. The subjective hand evaluation was performed by 20 subjects (age: 20-25) with 5-point scale questionnaires to investigate the change of PET knit fabrics treated for different times, specifically, 0, 30 and 90 minutes. The questionnaires were composite with 8 questions; roughness, smoothness, wetness, stiffness, coolness, touch, preference, and comfort. In order to evaluate sensations of wear comfort, we made garments with UV treated fabric and five female students were tested. They walked at the speed of 6.7 km/ hr for 15 minutes in an environment, which was controlled at $29^{\circ}C,\;75{\pm}5%$ RH. Before and after exercising, the microclimate under clothing and subjective wear comfort was measured. The results of subjective evaluation of fabric hand were that untreated and treated for 30 minutes PET were recognized as similar and have a good evaluation on comfort, preference, and touch. According to the result of wear comfort, clothing treated by UV for 90 minutes had the lowest value on the thermal and humidity sensations. In addition, the value of tactile and comfort sensation was the highest on the clothing treated by UV for 90 minutes. In the case of objective evaluation, PET treated for 90 minutes was the lowest on microclimate humidity. PET irradiated by UV for 90 minutes was more 'cool' in thermal sensation and more 'dry' in wet sensation. Accordingly, it was consistent with the result of subjective wear comfort.

Characteristics of Polycarbonate Film by Ion Beam for UV Block (이온빔을 이용한 폴리카보네이트 필름의 자외선 차단 특성)

  • Choi, Byoung-Hoon;Kim, Young-Jun
    • Polymer(Korea)
    • /
    • v.29 no.6
    • /
    • pp.588-592
    • /
    • 2005
  • For the purpose of obtaining polycarbonate film which blocks ultra-violet ion beam was irradiated onto the surface of PC film. This method has gotten several advantages compared with the techniques, such as the protection of changes in film thickness and UV blocking material deposited onto a base film. In order to investigate UV blocking PC film, the optical and chemical characteristics, surface morphology and lightfastness were confirmed by UV/Vis, FTIR(ATR) spectroscopy, AFM, and Q-UV fasoess analyses. As a result, it was shown that the modified PC film was able to block almost all of UV region and easily control the degree of UV block. The optical changes in the film were attributed to chemical changes in PC surface by ion beam irradiation. Moreover, we expect that the modified PC film can durably block UV due to no changes in colour and UV transmittance after UV fastness test.

Preparation and Properties of Spherical BaMgAl10O17:Eu Phosphor by Multi-step Precipitation Method (다단 침전법에 의한 구형 BaMgAl10O17:Eu 형광체의 제조 및 특성)

  • Park, Jumg-Min;Jung, Ha-Kyun;Park, Hee-Dong;Park, Yoon-Chang
    • Korean Journal of Materials Research
    • /
    • v.12 no.11
    • /
    • pp.840-844
    • /
    • 2002
  • A spherical $BaMgAl_{10}$ $O_{17}$ :Eu phosphor has been synthesized by a multi-step precipitation route. In order to successfully synthesize the phosphor with spherical shape, the hydrated-alumina particles should be controlled for spherical shape. In this process, the hydroxypropyl cellulose (HPC) was used as a dispersing reagent. This reagent plays an important role in that the particles were controlled to have the uniform size of sub-micron. The final product prepared by the multi-step precipitation method maintained spherical shape with uniform size of 0.4$\mu\textrm{m}$. It can be seen in X-ray diffraction patterns, formation of the single phase of $BaMgAl_{10}$ $O_{17}$ :Eu phosphor prepared by the multi-step precipitation method at $1350^{\circ}C$. Also, the emission spectra of spherical $BaMgAl_{O}$ $10_{17}$ :Eu phosphor in the present case was compared with those of commercially-available blue phosphor under VUV (Vacuum Ultra Violet) excitation. The luminescence process of the $BaMgAl_{10}$ $O_{17}$ :Eu phosphor is characterized by the $4f^{6}$$5d^1$longrightarrow4f$^{7}$ transition (blue) of the $Eu^{2+}$ ion acting as an activating center and the maximum luminescence intensity was obtained by reduction treatment at 145$0^{\circ}C$.

A Study on the Chemical Constituents from Marine Sponge Luffariella sp. (해면 Luffariella sp.의 화학적 성분 연구)

  • Park, Sun Ku;Kim, Sung Soo;Park, Jun Dae;Hong, Jung Sun;Kim, In Kyu
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.7
    • /
    • pp.559-563
    • /
    • 1995
  • The three metabolites, Germacrene alcohol(1), Aaptamine(2) and Hexacyclic terpene(3) were isolated from Marine Sponge Luffariella sp., collected in October 1992, Manado Bay, Sulawesi in Indonesia showed in vitro activity against KB cancer cell line, and structure assignment for 1 was corrected by comparison of their spectral data with the literature $values^1$. Their structure were elucidated by $^1H$, $^13C$ NMR, $^1H$ $^13C$(1 bond) Heteronuclear Multiple Quantum Coherence Spectroscopy$(HMQC)^2$, $^1H$ $^13C$(2 and 3 bond) Heteronuclear Multiple Bond Correlation Spectroscopy$(HMBC)^3$, Electron Impact Mass Spectroscopy(EI ms), Ultra-violet Spectroscopy(UV) and Infrared Spectroscopy(IR).

  • PDF

Multi-Core Fiber Based Fiber Bragg Gratings for Ground Based Instruments

  • Min, Seong-Sik;Lindley, Emma;Leon-Saval, Sergio;Lawrence, Jon;Bland-Hawthorn, Joss
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.53.2-53.2
    • /
    • 2015
  • Fiber Bragg gratings (FBGs) are the most compact and reliable method of suppressing atmospheric emission lines in the infrared for ground-based telescopes. It has been proved that real FBGs based filters were able to eliminate 63 bright sky lines with minimal interline losses in 2011 (GNOSIS). Inscribing FBGs on multi-core fibers offers advantages. Compared to arrays of individual SMFs, the multi-core fiber Bragg grating (MCFBG) is greatly reduced in size, resistant to damage, simple to fabricate, and easy to taper into a photonics lantern (PRAXIS). Multi-mode fibers should be used and the number of modes has to be large enough to capture a sufficient amount of light from the telescope. However, the fiber Bragg gratings can only be inscribed in the single-mode fiber. A photonic lantern bi-directionally converts multi-mode to single-mode. The number of cores in MCFBGs corresponds to the mode. For a writing system consisting of a single ultra-violet (UV) laser and phase mask, the standard writing method is insufficient to produce uniform MCFBGs due to the spatial variations of the field at each core within the fiber. Most significant technical challenges are consequences of the side-on illumination of the fiber. Firstly, the fiber cladding acts as a cylindrical lens, narrowing the incident beam as it passes through the air-cladding interface. Consequently, cores receive reduced or zero illumination, while the focusing induces variations in the power at those that are exposed. The second effect is the shadowing of the furthest cores by the cores nearest to the light source. Due to a higher refractive index of cores than the cladding, diffraction occurs at each core-cladding interface as well as cores absorb the light. As a result, any core that is located directly behind another in the beam path is underexposed or exposed to a distorted interference pattern from what phase mask originally generates. Technologies are discussed to overcome the problems and recent experimental results are presented as well as simulation results.

  • PDF

Studies on the Constituents of Spiraea Koreana Nakai (참조팝나무의 成分 Alkaloid 에 關한 硏究)

  • Jin, Kab-Dukc
    • Journal of the Korean Chemical Society
    • /
    • v.11 no.3
    • /
    • pp.111-116
    • /
    • 1967
  • A new alkaloid named Spirajine(m.p. 182~$184^{\circ}C$ $[{\alpha}]d^{19}+3.4^{\circ}$ in $CHCl_3$, $C_{23}H_{33}NO_3$, colorless prism) was isolated from the leaves of Spiraea Koreana Nakai (Spiraeceae) (Korean name "Chamjopab namu") which grows in the mountaineous area of Korea, by process of Scheme I (yields 0.13%). Another two unidentified alkaloids (not yet crystallized) were separated by the method of thin layer chromatography. (The Rf values of the two unidentified alkaloids were 0.66, 0.77, respectively and Spirajine 0.72) Spirajine were subjected to the structural investigation with the use of ultra violet and infra red spectrophotometry, and opical rotatory dispersion. The alkaloid contains two ketonic carbonyl groups, tertiary hydroxyl group, methyl groups, N-methyl group and both cyclohexane ring and cyclopentane ring.

  • PDF