• Title/Summary/Keyword: ultra low-shrinkage

Search Result 29, Processing Time 0.022 seconds

Performance review of ultra-low shrinkage concrete by field application (현장적용을 통한 초 저수축 콘크리트의 성능 검토)

  • Kim, Kang-Min;Lee, Hyun-Seung;Seo, Tae-Seok
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.211-212
    • /
    • 2022
  • In this study, the cracking control performance of ultra-low shrinkage concrete was investigated by the field application. As a result, drying shrinkage crack occurred in normal concrete wall, but no crack occurred in ultra-low shrinkage concrete wall. It is determined that the drying shrinkage crack control effect of the ultra-low shrinkage concrete is excellent.

  • PDF

An Experimental Study on the Shrinkage Properties of Ultra-Low Shrinkage Concrete (초 저수축 콘크리트의 수축특성에 관한 실험적 연구)

  • Seo, Tae-Seok;Kim, Kang-Min;Lee, Hyun-Seunh
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.148-149
    • /
    • 2021
  • In Japan, ultra-low shrinkage concrete has been developed and commercialized to control drying shrinkage cracks to the limit. However, in the case of South Korea, the study on this technology has not yet been conducted in earnest. Therefore, the study was conducted for the development of ultra-low shrinkage concrete to control the drying shrinkage crack of concrete to the limit, and in this study, after determining the mixture of ultra-low shrinkage concrete, a wall type mock-up specimen was produced to observe the shrinkage behavior of ultra-low shrinkage concrete.

  • PDF

Analysis of Crack Control Effect of Ultra-low Shrinkage Concrete through Wall Mock-up Test (벽체 실물대부재실험을 통한 초 저수축 콘크리트의 균열제어 효과 분석)

  • Seo, Tae-Seok;Lee, Hyun-Seung;Kim, Kang-Min
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.1
    • /
    • pp.45-55
    • /
    • 2022
  • Ultra-low shrinkage concrete is very effective for securing the quality and appearance of a concrete structure because it can control the drying shrinkage cracks of the concrete structure to within a certain limit. In this study, with the purpose of commercializing ultra-low shrinkage concrete, the optimal amount of expansive agent and shrinkage reducing agent was determined through a lab test, and a concrete wall mock-up test was conducted to examine the shrinkage properties and crack control effects of ultra-low shrinkage concrete. As a result, it was confirmed that there was little drying shrinkage deformation in the wall specimen, and furthermore that no cracks were generated.

A Study on the Manufacture and Application of Ultra-high Strength Concrete (초고강도 콘크리트의 제조 및 현장적용성에 관한 연구)

  • Choi, Il-Ho;Jung, Yang-Hee;Kim, Ook-Jong;Lee, Do-Bum
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.11a
    • /
    • pp.1-4
    • /
    • 2007
  • Because reinforced concrete structures were being high more and more in recent year, concrete was being demanded high performance of high strength and high fluidity. But various characteristics must be confirmed besides guarantee of demand strength in ultra-high strength concrete. In ultra-high strength concrete, autogenous shrinkage and drying shrinkage grow big because of a low water cement ratio and much quantity of binder. So dangerousness of crack generation grow big in early ages. And ultra-high strength concrete is influenced by use materials more than ordinary strength concrete. In this study we were examined mix design, atuogenous shrinkage and pumpability of ultra-high strength concrete to apply on the ground.

  • PDF

Evaluation of Properties of Ultra-Low Shrinkage Concrete for Omission of Paking Lot Floor Joint (주차장 바닥 줄눈 생략을 위한 초저수축 콘크리트 물성 평가)

  • Kim, Kang-Min;Lee, Hyun-Seung;Yoon, Seob;Seo, Tae-Seok
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.194-195
    • /
    • 2022
  • The jointing of unsupported concrete on the parking lot floor is a process for cracking and stress relief due to concrete drying shrinkage and restraint, but curling occurs due to long-term drying shrinkage after the initial age. will be lowered Therefore, by using an expansion material and a shrinkage reducing agent, the dry shrinkage of concrete is realized to 200 με or less.

  • PDF

Properties Strength and Autogenous Shrinkage on the Ultra High Performance Concrete by Fiber Type and Pre-mix Binder (섬유종류 및 결합재의 프리믹스에 따른 초고성능콘크리트의 강도 및 자기수축 특성)

  • Gu, Gyeong-Mo;Hwang, In-Seong;Kim, Won-Gi
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.275-276
    • /
    • 2018
  • Ultra high performance concrete(UHPC) represents high early age autogenous shrinkage strain due to its low water-to-binder ratio(W/B) and high fineness admixture usage. It has been reported that fiber can control restrained tensile stress and crack. The purpose of the present study is, therefore, to investigate the autogenous shrinkage as well as mechanical properties including compressive strength, flexural strength and modulus of elasticity on the UHPC with fiber type and pre-mix of binder.

  • PDF

Effect of cover depth and rebar diameter on shrinkage behavior of ultra-high-performance fiber-reinforced concrete slabs

  • Yoo, Doo-Yeol;Kwon, Ki-Yeon;Yang, Jun-Mo;Yoon, Young-Soo
    • Structural Engineering and Mechanics
    • /
    • v.61 no.6
    • /
    • pp.711-719
    • /
    • 2017
  • This study investigates the effects of reinforcing bar diameter and cover depth on the shrinkage behavior of restrained ultra-high-performance fiber-reinforced concrete (UHPFRC) slabs. For this, twelve large-sized UHPFRC slabs with three different rebar diameters ($d_b=9.5$, 15.9, and 22.2 mm) and four different cover depths (h=5, 10, 20, and 30 mm) were fabricated. In addition, a large-sized UHPFRC slab without steel rebar was fabricated for evaluating degree of restraint. Test results revealed that the uses of steel rebar with a large diameter, leading to a larger reinforcement ratio, and a low cover depth are unfavorable regarding the restrained shrinkage performance of UHPFRC slabs, since a larger rebar diameter and a lower cover depth result in a higher degree of restraint. The shrinkage strain near the exposed surface was high because of water evaporation. However, below a depth of 18 mm, the shrinkage strain was seldom influenced by the cover depth; this was because of the very dense microstructure of UHPFRC. Finally, owing to their superior tensile strength, all UHPFRC slabs with steel rebars tested in this study showed no shrinkage cracks until 30 days.

Experimental study on creep and shrinkage of high-performance ultra lightweight cement composite of 60MPa

  • Chia, Kok-Seng;Liu, Xuemei;Liew, Jat-Yuen Richard;Zhang, Min-Hong
    • Structural Engineering and Mechanics
    • /
    • v.50 no.5
    • /
    • pp.635-652
    • /
    • 2014
  • Creep and shrinkage behaviour of an ultra lightweight cement composite (ULCC) up to 450 days was evaluated in comparison with those of a normal weight aggregate concrete (NWAC) and a lightweight aggregate concrete (LWAC) with similar 28-day compressive strength. The ULCC is characterized by low density < 1500 $kg/m^3$ and high compressive strength about 60 MPa. Autogenous shrinkage increased rapidly in the ULCC at early-age and almost 95% occurred prior to the start of creep test at 28 days. Hence, majority of shrinkage of the ULCC during creep test was drying shrinkage. Total shrinkage of the ULCC during the 450-day creep test was the lowest compared to the NWAC and LWAC. However, corresponding total creep in the ULCC was the highest with high proportion attributed to basic creep (${\geq}$ ~90%) and limited drying creep. The high creep of the ULCC is likely due to its low elastic modulus. Specific creep of the ULCC was similar to that of the NWAC, but more than 80% higher than the LWAC. Creep coefficient of the ULCC was about 47% lower than that of the NWAC but about 18% higher than that of the LWAC. Among five creep models evaluated which tend to over-estimate the creep coefficient of the ULCC, EC2 model gives acceptable prediction within +25% deviations. The EC2 model may be used as a first approximate for the creep of ULCC in the designs of steel-concrete composites or sandwich structures in the absence of other relevant creep data.

Evaluating Early Age Shrinkage Behavior of Ultra High Performance Cementitious Composites (UHPCC) with CSA Expansive Admixture and Shrinkage Reducing Agent (CSA계 팽창재 및 수축 저감제의 혼입에 따른 UHPCC의 초기 수축 거동 평가)

  • Yoo, Doo-Yeol;Park, Jung-Jun;Kim, Sung-Wook;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.4
    • /
    • pp.441-448
    • /
    • 2011
  • In this study, experimental tests of chemical and autogenous shrinkage were performed to evaluate the early age shrinkage behaviors of ultra high performance cementitious composites (UHPCC) with various replacement ratios of silica fume (SF), shrinkage reducing agent (SRA), expansive admixture (EA), and superplasticizer (SP). Starting time of self-desiccation, was analyzed by comparing the setting times and the deviated point of chemical and autogenous shrinkage strains. The test results indicated that both SF and SRA augment the early age chemical shrinkage, whereas SP delays the hydration reaction between cement particles and water, and reduces chemical shrinkage. About 49% of autogenous shrinkage was depleted by synergetic effect of SRA and EA. The hardening of UHPCC was catalyzed by containing EA. Self-desiccation of UHPCC occurred prior to the initial setting due to the high volume fraction of fibers and low water-binder ratio (W/B).