• Title/Summary/Keyword: ultra high-speed

Search Result 429, Processing Time 0.027 seconds

Analysis of Signal Integrity of High Speed Serial Interface for Ultra High Definition Video Pattern Control Signal Generator (UHD급 영상패턴 제어 신호발생기를 위한 고속 시리얼 인터페이스의 신호 무결성 분석)

  • Son, Hui-Bae;Kweon, Oh-Keun
    • Journal of Broadcast Engineering
    • /
    • v.19 no.5
    • /
    • pp.726-735
    • /
    • 2014
  • In accordance with 4K UHD(Ultra High Definition) LCD television's higher resolution and data expansion, LCD TV had to face problems such as increasing numbers of cables and tangible skews problems among cables. The V-by-One HS is a new interface technology in the path between the image processing IC and timing control (TCON) board. The variable speed from 600 Mbps to 3.75 Gbps effectively meets the requirements of various different pixel rates. In this paper, we use the V-by-One HS interface to illustrate our proposed simulation method of frequency resonance mode and PCB design approach to model the effects of signal integrity for high speed video signal using an IBIS models.

Machining Characteristics of Nickel-Chrome Alloy according to Changing with Ultra High-Speed RPM (초고속 RPM변화에 따른 니켈-크롬 합금의 밀링가공 특성 평가)

  • Lee, Seung-Jun;Choi, Soo-Chang;Kim, Jin-Geun;Shin, In-Dong;Lee, Deug-Woo;Lee, Jong-Ryul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.2
    • /
    • pp.1-5
    • /
    • 2010
  • According to the high demand of hybrid components, the hybrid materials development and processing technology were increased in the industry field. Although hybrid materials have various machining technologies, the research about them has rarely been proceed. This study is to carry out results about design technology of miniaturized high-speed air spindle and machining characteristics of hybrid materials using that. We studied machining characteristics in Nickel-Chrome alloy(Ni-Cr) according to change rotating speed using miniaturized high-speed air spindle. As the following results, the change of surface shape and roughness was investigated as the processing conditions such as rotating speed of miniaturized high-speed air spindle.

A Study on Hydrodynamic Stiffness Characteristics of Air Bearing for High Speed Spindle

  • Lee, J.Y.;Lee, D.W.;Seong, S.H.;Lee, Y.C.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.115-116
    • /
    • 2002
  • This study was carried out as one of efforts to overcome difficulties in air bearing design due to low stiffness and low damping. Hydrodynamic effects on hydrodynamic stiffness of a fluid film in a high speed air bearing with tow-row air sources are investigated. The hydrodynamic effects by the high speed over DN 1,000,000 and eccentricity of a proceeding which are not considered in conventional design of an air bearing need to be reconsidered. The hydrodynamic effects, which dominantly influence on the load capacity of air bearing, are caused mainly by proceeding speed, eccentricity, and the source positions. The two-row source arrangement in the air bearing produces quite unique hydrodynamic effects with respect to pressure distribution of the air film. Optimal arrangement of the two-row sources improves performance of an air bearing in film reaction force and loading capacity of high speed spindles. This study compares the pressure distribution by numerical simulation as a function of eccentricity of proceeding and the source positions. The air source position 1/7L form one end of an air bearing was found to be superior to source position of 1/4L. The dynamic stiffness were obtained using a two-dimensional cutting method which can directly measure the cutting reaction forces and the displacements of the spindle in two directions using a tool dynamometer and transducer sensors. Heat generation in the air film can not be negligible over the speed of DN 2,000,000. In order to analysis effects of heat generation on the characteristics of air bearing, high cooling bearing spindle and low cooling bearing spindle were tested and compared. Characteristics of the frequency response of shaft and motion of run out errors were different for the spindle. The test results show that, in the case of low cooling bearing spindle, the stiffness became smaller due to heat generation. The results, which were obtained for high speed region, may be used as a design information for spindle which can be applied to precision devices such as ultra precision grinding and ultra high speed milling.

  • PDF

Microstructural behavior on weld fusion zone of Al-Ti and Ti-Al dissimilar lap welding using single-mode fiber laser

  • Lee, Su-Jin;Kawahito, Yousuke;Kim, Jong-Do;Katayama, Seiji
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.7
    • /
    • pp.711-717
    • /
    • 2013
  • Titanium (Ti) metal and its alloys are desirable materials for ship hulls and other structures because of their high strength, light weight and corrosion-resistance. And light weight and corrosion-resistant aluminum (Al) is the ideal metal for shipbuilding. The joining of Ti and Al dissimilar metals is one of the effective measures to reduce weight of the structures or to save rare metals. Ti and Al have great differences in materials properties, and intermetallic compounds such as Ti3Al, TiAl, TiAl3 are easily formed at the contacting surface between Ti and Al. Thus, welding or joining of Ti and Al is considered to be extremely difficult. However, it was clarified that ultra-high speed welding could suppress the formation of intermetallic compounds in the previous study. Results of tensile shear strength increases with an increase in the welding speed, and therefore extremely high welding speed (50m/min in this study) is good to dissimilar weldability for Ti and Al. In this study, therefore, full penetration dissimilar lap welding of Ti (upper) - Al (lower) and Al (upper) - Ti (lower) with single-mode fiber laser was tried at ultra-high welding speed, and the microstructure of the interface zones in the dissimilar Al and Ti weld beads was investigated.

Microstructural behavior on weld fusion zone of Al-Ti and Ti-Al dissimilar lap welding using single-mode fiber laser

  • Lee, Su-Jin;Katayama, Seiji;Kim, Jong-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.2
    • /
    • pp.133-139
    • /
    • 2014
  • Titanium (Ti) metal and its alloys are desirable materials for ship hulls and other ocean structures because of their high strength, corrosion-resistance and light weight properties. And light weight and corrosion-resistant aluminum (Al) is the ideal metal for shipbuilding. The joining of Ti and Al dissimilar metals is one of the effective methode to reduce weight of the structures. Ti and Al have great differences in materials properties, and intermetallic compounds such as $Ti_3Al$, TiAl, $TiAl_3$ are easily formed at the contacting surface between Ti and Al. Thus, dissimilar welding and joining of Ti and Al are considered to be very difficult. However, it was clarified that ultra-high speed welding could suppress the formation of intermetallic compounds in the previous study. Results of tensile shear strength increases with an increase in the welding speed, and therefore extremely high welding speed (50 m/min) is good to dissimilar weldability for Ti and Al. In this study, therefore, full penetration dissimilar lap welding of Ti (upper) - Al (lower) and Al (upper) - Ti (lower) with single-mode fiber laser was tried at ultra-high welding speed, and the microstructure of the interface zones in the dissimilar Al and Ti weld beads was investigated.

Ultra Shallow Junction wish Source/Drain Fabricated by Excimer Laser Annealing and realized sub-50nm n-MOSFET (엑시머 레이져를 이용한 극히 얕은 접합과 소스, 드레인의 형성과 50nm 이하의 극미세 n-MOSFET의 제작)

  • 정은식;배지철;이용재
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.562-565
    • /
    • 2001
  • In this paper, novel device structures in order to realize ultra fast and ultra small silicon devices are investigated using ultra-high vacuum chemical vapor deposition(UHVCVD) and Excimer Laser Annealing (ELA). Based on these fundamental technologies for the deep sub-micron device, high speed and low power devices can be fabricated. These junction formation technologies based on damage-free process for replacing of low energy ion implantation involve solid phase diffusion and vapor phase diffusion. As a result, ultra shallow junction depths by ELA are analyzed to 10~20nm for arsenic dosage(2${\times}$10$\_$14//$\textrm{cm}^2$), exciter laser source(λ=248nm) is KrF, and sheet resistances are measured to 1k$\Omega$/$\square$ at junction depth of 15nm and realized sub-50nm n-MOSFET.

  • PDF

A Study on the Design of Ultra Precision Positioning Apparatus using FEM (I) (유한요소법을 이용한 초정밀 미동스테이지 설계에 관한 연구(I))

  • 김재열;윤성운;김항우;한재호;곽이구
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.190-194
    • /
    • 2001
  • Because, Piezo-electric transducer(PZT) transform electric energy into mechanical energy, it is a adequate material for positioning control and force control, take excellent properties as actuator with high speed and high performance. Recently, researches of ultra precision positioning using this PZT are advanced in. In this paper, we use a actuator of PZT, design a positioning apparatus with ultra precision position apparatus as hinge structure. Because of this purpose, before, we were confirmed in control properties of ultra precision stage by FEM method.

  • PDF

A Expermental Study on the Dynamic Coefficients according to the Source Positions in Externally Pressurised Air-lubricated Journal Bearing with Two Row Sources (2열 외부가압 공기 저어널 베어링에서 공기 급기구 위치에 따른 동적계수에 관한 실험적 연구)

  • 이종렬;이준석;성승학;이득우
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.231-235
    • /
    • 2001
  • This paper has been presented the dynamic effect by the journal speed. eccentricity and source positions in order to overcome the defects of air bearing such as low stiffness and damping coefficient. Choosing the two row source position of air bearing is different from previous investigations in the side of pressure distribution of air film by the wedge effects. These optimal chooses of the two row source positions enable us to improve the performance of the film reaction force and loading force as making the high speed spindle. The results of investigated characteristics may be applied to precision devices like ultra-precision grinding machine and ultra high speed milling.

  • PDF

A Study on Transition of Dimension Error and Surface Precision in High Speed Machining of Al-alloy (Al 합금의 고속가공에서 치수오차와 표면정도 추이고찰)

  • 정문섭
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.3
    • /
    • pp.96-102
    • /
    • 2000
  • High speed machining aims to raise the productivity and efficiency by making more precise and higher value-added products than any other machining method by means of the high speediness of spindle and feed drive system. The purpose of this study is to investigate the effects of the run-out of endmill on the dimension precision of workpiece and to obtain the fundamental data on high speed machining which is available by machining the side of Al-alloy with solid carbide endmills in high speed machining center and by measuring dimensions and surface roughness. From the results of experimentation following are obtained ; if spindle speed is ultra high in conditions that radial depth of cut and feed per tooth are very small highly precise and accurate products are to be made efficiently with high feed rate. and so we can raise productivity.

  • PDF

Ion Pump Design for Improved Pumping Speed at Low Pressure

  • Paolini, Chiara;Audi, Mauro;Denning, Mark
    • Applied Science and Convergence Technology
    • /
    • v.25 no.6
    • /
    • pp.108-115
    • /
    • 2016
  • Even if ion pumps are widely and mostly used in ultra-high vacuum (UHV) conditions, virtually every existing ion pump has its maximum pumping speed around 1E-6 mbar (1E-4 Pa). Discharge intensity in the ion pump Penning cell is defined as the current divided by pressure (I/P). This quantity reflects the rate of cathode bombardment by ions, which underlies all of the various pumping mechanisms that occur in ion pumps (chemisorption on sputtered material, ion burial, etc.), and therefore is an indication of pumping speed. A study has been performed to evaluate the influence of magnetic fields and cell dimensions on the ion pump discharge intensity and consequently on the pumping speed at different pressures. As a result, a combination of parameters has been developed in order to design and build an ion pump with the pumping speed peak shifted towards lower pressures. Experimental results with several different test set-ups are presented and a prototype of a new 200 l/s ion pump with the maximum pumping speed in the 1E-8 mbar (1E-6 Pa) is described. A model of the system has also been developed to provide a framework for understanding the experimental observations.