• Title/Summary/Keyword: ultra fine admixture

Search Result 9, Processing Time 0.026 seconds

Durability Evaluation of Ternary Blend Concrete Mixtures adding Ultra Fine Admixture (고분말도 혼화재를 첨가한 삼성분계 시멘트 콘크리트의 내구성 평가)

  • Ahn, Sang Hyeok;Jeon, Sung Il;Nam, Jeong-Hee;An, Ji Hwan
    • International Journal of Highway Engineering
    • /
    • v.15 no.5
    • /
    • pp.101-110
    • /
    • 2013
  • PURPOSES : The purpose of this study is to evaluate the durability of ternary blended concrete mixtures adding ultra fine admixture. METHODS : From the literature review, crack was considered as the main distress failure criterion on concrete bridge deck pavement. To reduce the initial crack development due to drying shrinkage, CSA expansion agent and shrink reduction agent were used to ternary blended concrete mixtures as a admixture. Laboratory tests including chloride ion penetration test, surface scaling test, rapid freeze & thaw resistance test, non restrained drying shrinkage and restrained drying shrinkage test were conducted to verify the durability of ternary blended concrete mixtures. RESULTS : Based on the test results, proposed mixtures were verified as high qualified durable materials. Expecially initial drying shrinkage crack was not occurred in ternary blended concrete mixtures with CSA expansion agent. CONCLUSIONS : It is concluded that the durability of proposed ternary blend concrete mixture was acceptable to apply for the concrete bridge deck pavement.

ASR Resistance of Ternary Blended Binder Adding Ultra Fine Mineral Admixture (고분말도 광물성 혼화재를 혼입한 삼성분계 결합재의 ASR 저항성 평가)

  • Jeon, Sung Il;Ahn, Sang Hyeok;An, Ji Hwan;Yun, Kyung Ku;Nam, Jeong-Hee
    • International Journal of Highway Engineering
    • /
    • v.15 no.5
    • /
    • pp.81-89
    • /
    • 2013
  • PURPOSES : This study is to evaluate ASR(alkali silica reactivity) resistance of ternary blended binder adding ultra fine mineral admixture. METHODS : This study analyzes ASR expansion using ASTM C 1260 and 1567. RESULTS : This study showed that the fineness of mineral admixture had no effect on ASR expansion. The expansion of ternary blended binder(UFFA 20%+FGGBS 10%) were below 0.1%, and this binder met the ASR standard. Also when adding the CSA expansion agent, ASR expansion slightly decreased. The expansion of latex modified mixture increased by 80% comparing plain mixture. CONCLUSIONS : Ternary blended binder met the ASR standard, and this binder is available in concrete bridge deck overlay.

An Experimental Study on the Ultra High Strength Concrete Using Silica-Fume and Fly-Ash (실리카흄 및 플라이애쉬를 사용한 초고강도 콘크리트에 관한 실험적 연구)

  • 박기철;정헌수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1991.04a
    • /
    • pp.23-28
    • /
    • 1991
  • Silica-Fume, an industrial by product, has an extremely small average partical size of 0.1${\mu}{\textrm}{m}$ and when used as a concrete admixture fills the fine voids which exist in concrete. The purpose of this study is to investigate material properties of the high-strength concrete using Silica-Fume and Fly-Ash. The main variables studied are; a) water-cement ratio. b) Silica-Fume, Fly-Ash content. The maximum compressive strength of 1000Kg/$\textrm{cm}^2$ is achieved with a mix using 18% water-cement ratio, 20% Silica-Fume and 10% Fly-Ash ratio.

  • PDF

Estimation on Durability of 80MPa High Strength Concrete for Lotte Town in Pusan (부산 롯데타운용 80MPa급 초고강도 콘크리트의 내구성 평가)

  • Yoo, Seung-Yeup;Koo, Ja-Sul;Park, Eui-Soon;Kim, Gang-Ki;Kim, Jung-Jin;Park, Soon-Jeon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.307-308
    • /
    • 2009
  • The ultra high strength concrete classed 80 MPa for Lotte Town at pusan has many hydrated materials due to low water to binder ratio and high admixture contents and improved void structure caused by C-S-H gel corresponding to pozzolan and latent hydraulicity of FA and BS. Moreover, durability of the concrete is superior because there was no penetration of carbon dioxide, chloride and chloric ion caused by its fine internal constitution.

  • PDF

A Study on the Engineering Properties of Ultra High-Strength Concrete Utilizing Crushed Sand (부순모래를 사용한 초고강도 콘크리트의 공학적 특성에 관한 연구)

  • Lee, Sang-Soo;Rho, Hyoung-Nam;Song, Ha-Young
    • Journal of the Korea Institute of Building Construction
    • /
    • v.8 no.4
    • /
    • pp.45-51
    • /
    • 2008
  • Recently, the demand of ultra high-rise building is on the increase in korea due to the rapidly changing movement in economic growth and the expansion of national infrastructure. At the same time, the tendency toward the amount used of concrete has greatly increased every year. In addition, as the seriousness of quantity demanded of aggregate is gathering strength, the active areas of research proceeds to do actively in every place in order to review the usability of crushed sand as a part of the countermeasures. And, it needs to establish the quality standard and service guide, etc. for the practical use. Accordingly, this study was to establish the ratio of water-binder materials as three levels like 23.5, 27.5, and 31.5%, and the replacement ratio as three levels like 0, 50, and 100% in order to define the engineering properties of ultra high-strength concrete using the crushed sand. This study was to examine it after establishing the combined condition by the substitute of the fine aggregate percentage and admixture. From the result of this research above, it may be summed up as follows. 1) The more the replacement ratio of crushed sand and the ratio of water-binder materials increased, the mon the fluidity decreased due to the decrease of irregular grain shape of sand and unit combined discretion. 2) This study found out that 100% of replacement ratio of crushed sand was almost similar level to the compressive strength of concrete using the natural sand.

Strength enhancement of concrete incorporating alccofine and SNF based admixture

  • Reddy, Panga Narasimha;Jindal, Bharat Bhushan;Kavyateja, Bode Venkata;Reddy, A. Narender
    • Advances in concrete construction
    • /
    • v.9 no.4
    • /
    • pp.345-354
    • /
    • 2020
  • Cement is the most significant component in concrete. Large scale manufacturing of cement consumes more energy and release harmful products (Carbon dioxide) into the atmosphere that adversely affect the environment and depletes the natural resources. A lot of research is going on in globally concentrating on the recycling and reuse of waste materials from many industries. A major share of research is focused on finding cementitious materials alternatives to ordinary Portland cement. Many industrial waste by-products such as quartz powder, metakaolin, ground granulated blast furnace slag, silica fume, and fly ash etc. are under investigations for replacement of cement in concrete to minimize greenhouse gases and improve the sustainable construction. In current research, the effects of a new generation, ultra-fine material i.e., alccofine which is obtained from ground granulated blast furnace slag are studied as partial replacement by 25% and with varying amounts of sulfonated naphthalene formaldehyde (i.e., 0.3%, 0.35% and 0.40%) on mechanical, water absorption, thermal and microstructural properties of concrete. The results showed moderate improvement in all concrete properties. Addition of SNF with combination of alccofine showed a significant enhancement in fresh, hardened properties and water absorption test as well as thermal and microstructural properties of concrete.

Physical and Chemical Properties of Nano-slag Mixed Mortar

  • Her, Jae-Won;Lim, Nam-Gi
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.6
    • /
    • pp.145-154
    • /
    • 2010
  • As buildings have become higher and larger, the use of high performance concrete has increased. With this increase, interest in and use of ultra fine powder admixture is also on the rise. The silica fume and BSF are the admixtures currently being used in Korea. However, silica fume is exclusively import dependent because it is not produced in Korea. In the case of BFS, it greatly improves concrete fluidity and long-term strength. But a problem exists in securing early strength. Furthermore, air-cooled slag is being discarded, buried in landfills, or used as road bed materials because of its low activation energy. Therefore, we investigated in this study the usability of nano-slag (both rapidly-chilled and air-cooled) as an alternative material to the silica fume. We conducted a physic-chemical analysis for the nano-slag powder and performed a mortar test to propose quality standards. The analysis and testing were done to find out the industrial usefulness of the BFS that has been grinded to the nano-level.

Evaluation of Chloride and Chemical Resistance of High Performance Mortar Mixed with Mineral Admixture (광물성 혼화재료를 혼입한 고성능 모르타르의 염해 및 화학저항성 평가)

  • Lee, Kyeo-Re;Han, Seung-Yeon;Choi, Sung-Yong;Yun, Kyong-Ku
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.618-625
    • /
    • 2018
  • With the passing of time, exposed concrete structures are affected by a range of environmental, chemical, and physical factors. These factors seep into the concrete and have a deleterious influence compared to the initial performance. The importance of identifying and preventing further performance degradation due to the occurrence of deterioration has been greatly emphasized. In recent years, evaluations of the target life have attracted increasing interest. During the freezing-melting effect, a part of the concrete undergoes swelling and shrinking repeatedly. At these times, chloride ions present in seawater penetrate into the concrete, and accelerate the deterioration due to the corrosion of reinforced bars in the concrete structures. For that reason, concrete structures located onshore with a freezing-melting effect are more prone to this type of deterioration than inland structures. The aim of this study was to develop a high performance mortar mixed with a mineral admixture for the durability properties of concrete structures near sea water. In addition, experimental studies were carried out on the strength and durability of mortar. The mixing ratio of the silica fume and meta kaolin was 3, 7 and 10 %, respectively. Furthermore, the ultra-fine fly ash was mixed at 5, 10, 15, and 20%. The mortar specimens prepared by mixing the admixtures were subjected to a static strength test on the 1st and 28th days of age and degradation acceleration tests, such as the chloride ion penetration resistance test, sulfuric acid resistance test, and salt resistant test, were carried out at 28 days of age. The chloride diffusion coefficient was calculated from a series of rapid chloride penetration tests, and used to estimate the life time against corrosion due to chloride ion penetration according to the KCI, ACI, and FIB codes. The life time of mortar with 10% meta kaolin was the longest with a service life of approximately 470 years according to the KCI code.

A Study on the Fundamental Properties of Ultra Rapid Hardening Mortar using Coal-Ash (잔골재 대체재로서 석탄회를 이용한 초속경 보수모르타르의 기초적 특성에 관한 연구)

  • Lee, Gun-Cheol;Oh, Dong-Uk;Kim, Young-Geun;Cho, Chung-Ki
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.1
    • /
    • pp.128-135
    • /
    • 2011
  • In this study, in order to develop ultra rapid hardening mortar(URHM) for tunnel repairs using bottom ash of low recycle ratio and Admixture as Eco concept, fundamental properties of URHM on temperature condition of construction field were performed. Test result, URHM of three types for fluidity and setting time were as in the following : B > C > A. Those for low temperatures were later than the standard condition. Compressive, bending and bond strength were similar with three types as follow. In compressive strength, initial strength of the low were smaller than the standard but the low in the long-term were similar with the standard. On the contrary to this, bending strength were similar in initial strength but the low in the long-term were smaller than the standard. The low in bond strength was average 35% less than the standard. Length changes was as in the following : A > C > B. the low is two times much as the standard but the case using blast furnace slag particles noticeably reduced length changes. Water absorption coefficient and water vapor resistance were as in the following : C > A > B. In case of URHM added bottom ash, water absorption coefficient and water vapor resistance were increased because bottom ash is porous material.

  • PDF