• Title/Summary/Keyword: ultimate strength of plates

Search Result 127, Processing Time 0.022 seconds

Development of Ultimate Strength Design Formula considering Buckling under Longitudinal and Transverse Axial Compressive Load (종횡방향 압축하중을 받는 유공판의 최종강도 설계식 개발)

  • Park Joo-Shin;Ko Jae-Yong;Lee Jun-Kyo
    • Journal of Navigation and Port Research
    • /
    • v.30 no.3 s.109
    • /
    • pp.173-179
    • /
    • 2006
  • A number of perforated plates are utilized for the passage of the crew and the equipment, reducing weight and the arrangement of piping. Hull girders in double bottom and floor plates are the typical parts which have those plates in a ship structure, and the perforated plate is usually positioned at the place which has less loading without local strength problems. In the case of utilizing the plate inevitably at the place which has large strength, an opening of the plate has large effect on the buckling strength due to in-plane rigidity and ultimate strength. Therefore the assessments of the elastic buckling strength and the ultimate strength for the perforated plate are the essential requirements for determining the dimensions of the parts at the initial design stage. With above reason, a need of the reasonable assessments for the elastic buckling strength and the ultimate strength has evolved. The numerical series analysis with the consideration of the effect due to various aspect ratios and slenderness ratios were performed using finite element method in this research. Simple formulas for the design are also proposed from the above analysis.

A Study on the Buckling Strength of Plate Panels with Opening (유공판의 좌굴강도에 관한 연구)

  • Kim, Ul-Nyeon;Choe, Ick-Heung;Kwon, Jin-Chil;Paik, Jeom-Kee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.2
    • /
    • pp.210-224
    • /
    • 2010
  • The aim of the present study is to investigate the buckling strength of plates and stiffened panels with opening under transverse thrust and shear actions. It is observed that the existing design formulation for critical-buckling strength of plates are not valid for perforated plates, because the current design formulation trends can significantly overestimate or underestimate the load-carrying capacity of plates when plates have large opening and/or are thick. A series of eigen value and elastic.plastic large deflection finite element analyses are carried out with varying the aspect ratio of plate, the opening size and location on plate until and after the ultimate strength is reached. Based on the results obtained from the present study, closed-form design formulations for the elastic buckling strength of plates and stiffened panels with opening are derived. The derived design formulations are considered plasticity correction of the material and verified by experimental tests and results of nonlinear finite element computations.

Structural coupling mechanism of high strength steel and mild steel under multiaxial cyclic loading

  • Javidan, Fatemeh;Heidarpour, Amin;Zhao, Xiao-Ling;Al-Mahaidi, Riadh
    • Steel and Composite Structures
    • /
    • v.27 no.2
    • /
    • pp.229-242
    • /
    • 2018
  • High strength steel is widely used in industrial applications to improve the load-bearing capacity and reduce the overall weight and cost. To take advantage of the benefits of this type of steel in construction, an innovative hybrid fabricated member consisting of high strength steel tubes welded to mild steel plates has recently been developed. Component-scale uniaxial and multiaxial cyclic experiments have been conducted with simultaneous constant or varying axial compression loads using a multi-axial substructure testing facility. The structural interaction of high strength steel tubes with mild steel plates is investigated in terms of member capacity, strength and stiffness deterioration and the development of plastic hinges. The deterioration parameters of hybrid specimens are calibrated and compared against those of conventional steel specimens. Effect of varying axial force and loading direction on the hysteretic deterioration model, failure modes and axial shortening is also studied. Plate and tube elements in hybrid members interact such that the high strength steel is kept within its ultimate strain range to prevent sudden fracture due to its low ultimate to yield strain ratio while the ductile performance of plate governs the global failure mechanism. High strength material also significantly reduces the axial shortening in columns which prevents undesirable frame deformations.

Ultimate strength estimation of composite plates under combined in-plane and lateral pressure loads using two different numerical methods

  • Ghannadpour, S.A.M.;Shakeri, M.;Barvaj, A. Kurkaani
    • Steel and Composite Structures
    • /
    • v.29 no.6
    • /
    • pp.785-802
    • /
    • 2018
  • In this paper, two different computational methods, called Rayleigh-Ritz and collocation are developed to estimate the ultimate strength of composite plates. Progressive damage behavior of moderately thick composite laminated plates is studied under in-plane compressive load and uniform lateral pressure. The formulations of both methods are based on the concept of the principle of minimum potential energy. First order shear deformation theory and the assumption of large deflections are used to develop the equilibrium equations of laminated plates. Therefore, Newton-Raphson technique will be used to solve the obtained system of nonlinear algebraic equations. In Rayleigh-Ritz method, two degradation models called complete and region degradation models are used to estimate the degradation zone around the failure location. In the second method, a new energy based collocation technique is introduced in which the domain of the plate is discretized into the Legendre-Gauss-Lobatto points. In this new method, in addition to the two previous models, the new model named node degradation model will also be used in which the material properties of the area just around the failed node are reduced. To predict the failure location, Hashin failure criteria have been used and the corresponding material properties of the failed zone are reduced instantaneously. Approximation of the displacement fields is performed by suitable harmonic functions in the Rayleigh-Ritz method and by Legendre basis functions (LBFs) in the second method. Finally, the results will be calculated and discussions will be conducted on the methods.

Compressive Ultimate Strength Analysis of Plates with Initial Imperfections (초기결함(初期缺陷)을 갖는 평판(平板)의 압축최종강도해석(壓縮最終强度解析))

  • J.S.,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.22 no.1
    • /
    • pp.31-37
    • /
    • 1985
  • In ship's structure, deck and bottom plate are main strength member subjected to the inplane load due to longitudinal bending, i.e. tensile and/or compressive load. The deck and bottom plate are subdivided into many plate members by stiffeners and girders longitudinally and transversely. Since the plate members are thin, it is likely to be collapsed under compressive load, and when we consider the local strength of deck and bottom, the plate members play an important role in the longitudinal strength. Therefore the precise analysis of their compressive ultimate strength is required for the optimal design of ship's structures. In this paper, the modified analytical method using the incremental form of principle of virtual displacement is introduced to determine the compressive ultimate load of plate members. The results by the present method is satisfactory, and the present method is more effective and economical than the finite element method.

  • PDF

An Experimental Study on the Structural Behavior of the Repaired flexural members by Epoxy-Bonded Steel Plates (철판압착법에 의해 보강된 휨부재의 구조적 거동에 관한 실험 연구)

  • 황규표;장성재;고훈범;임재형;음성우;문장수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.331-336
    • /
    • 1994
  • This paper presents comprehensive test data on the effect of Epoxy-Bonded Steel Plates on the ultimate strengths, ductilities, failure modes and structural deformations of flexural members strengthened with steel plates on the tension face. To achieve the purpose, six specimens with and without Epoxy-Bonded steel Plates were tested. The results show that Epoxy-Bonded Steel Plate is very effective for strengthening the damaged structure, That is, plated members have enhanced ultimate strength at all load levels until failure. However, the failure mode of plated members is brittle as soon as steel plate separates from concrete face.

  • PDF

An Experimental Study on Flexural Performance Evaluation of RC Beams Strengthened with Anchored CFRP Plates (CFRP판을 단부정착한 RC보의 휨성능 개선에 관한 실험적 연구)

  • Kim, Hyung-Jin;Hong, Ki-Nam;Han, Sang-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.4
    • /
    • pp.167-174
    • /
    • 2006
  • The purpose of this paper is to analyse and compare experimentally flexural behavior of RC beams strengthened with CFRP plates by different methods, which are divided into three classes: externally-bonded without end anchorage, externally-bonded with end anchorages, and anchored after prestressing of CFRP plates. Test results show that the RC beams strengthened with end anchorages have the improvement of ductility and flexural performance evaluation including ultimate strength and deflection, compared with only external bonding. Especially, RC beams with prestressed and anchored CFRP plates increase ultimate strength and ductility significantly.

Investigations on the bearing strength of stainless steel bolted plates under in-plane tension

  • Kiymaz, G.
    • Steel and Composite Structures
    • /
    • v.9 no.2
    • /
    • pp.173-189
    • /
    • 2009
  • This paper presents a study on the behavior and design of bolted stainless steel plates under in-plane tension. Using an experimentally validated finite element (FE) program strength of stainless steel bolted plates under tension is examined with an emphasis on plate bearing mode of failure. A numerical parametric study was carried out which includes examining the behavior of stainless steel plate models with various proportions, bolt locations and in two different material grades. The models were designed to fail particularly in bolt tear-out and material piling-up modes. In the numerical simulation of the models, non-linear stress-strain material behavior of stainless steel was considered by using expressions which represent the full range of strains up to the ultimate tensile strain. Using the results of the parametric study, the effect of variations in bolt positions, such as end and edge distance and bolt pitch distance on bearing resistance of stainless steel bolted plates under in-plane tension has been investigated. Finally, the results obtained are critically examined using design estimations of the currently available international design guidance.

Experiments on the Denting Damage and Residual Strength of Stiffened Plates (보강판의 국부변형 손상과 잔류 강도의 실험연구)

  • Park, Sang-Hyun;Shin, Hyun Kyoung;Kang, Eungsoon;Cho, Sang-Rai;Jang, Yong-Su;Baek, Nam-Ki;Park, Dong-Ki
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.4
    • /
    • pp.182-190
    • /
    • 2020
  • This study reports a series of drop impact tests performed to generate denting damages on stiffened plates and their residual ultimate strength tests under axial compression. The models were fabricated of general structural steel, and each model has six longitudinal stiffeners and two transverse frames. Among six fabricated models, four were damaged, and two were left intact for reference. To investigate the effects of collision velocity and impact location on the extent of damage, the drop height and the impact location were changed in each impact test. After performing the collision tests, the ultimate axial compression tests were conducted to investigate the residual strengths of the damaged stiffened plates. Finite element analyses were also carried out using a commercial package Abaqus/Explicit. The material properties obtained from a quasi-static tensile tests were used, and the strain-rate sensitivity was considered. After importing the collision simulation results, the ultimate strength calculations were carried out and their results were compared with the test data for the validation of the finite element analysis method.

Collapse Analysis of Stiffened Plates by Rigid Element Method (강체요소법(剛體要素法)에 의한 보강판(補剛板)의 붕괴해석(崩壞解析))

  • S.J.,Yim;C.D.,Jang;N.C.,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.25 no.4
    • /
    • pp.47-57
    • /
    • 1988
  • A new discrete method using idealized rigid body-spring model is introduced. This rigid element method is known to be more efficient and accurate than the finite element method in the inelastic range of structural analysis owing to simplified stress-strain and strain-displacement relations This kind of physical concept using idealized rigid model has been already applied among structural engineers to some problems such as rigid-plastic analysis or plastic design considering rigid bodies and plastic hinges. However the most rigorous and systematic research has been recently performed by T. Kawai et al.[1]. In this paper, an attempt is made to analyze the collapse behavior of stiffened plates under lateral loading by some modification and expansion of Kawai's rigid element approach to the collapse of plates without stiffener. Stiffened plates are treated as orthotropic plates which have equivalent bending rigidities. By employing Morley's plate element resubdivision technique, variety is given to mesh-division styles which have greate effect on the accuracy of numerical results. Some examples are shown to verify the validity of applying rigid element method to the ultimate strength analysis of stiffened plates. It is clarified that lateral deflections and detailed collapse patterns up to the ultimate state of stiffened plates can be easily obtained by the present approach.

  • PDF