• Title/Summary/Keyword: ultimate deflection

Search Result 310, Processing Time 0.026 seconds

Structural Behavior Analysis of Two-way RC Slabs by p-Version Nonlinear Finite Element Model (p-Version 비선형 유한요소모텔에 의한 2방향 철근 콘크리트 슬래브의 역학적 거동해석)

  • Cho, Jin-Goo;Park, Jin-Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.4
    • /
    • pp.15-24
    • /
    • 2005
  • This study is focused on modeling to predict the behavior of two-way RC slabs. A new finite element model will be presented to analyze the nonlinear behavior of RC slabs. The numerical approach is based on the p-version degenerate shell element including theory of anisotropic laminated composites, theory of materially and geometrically nonlinear plates. In the nonlinear formulation of this model, the total Lagrangian formulation is adopted with large deflections and moderate rotations being accounted for in the sense of von Karman hypothesis. The material model is based on the Kuper's yield criterion, hardening rule, and crushing condition. The validity of the proposed p-version nonlinear RC finite element model is demonstrated through the load-deflection curves and the ultimate loads. It is shown that the proposed model is able to adequately predict the deflection and ultimate load of two-way slabs with respect to steel arrangements and steel ratios.

Evaluation on structural behaviors of prestressed composite beams using external prestressing member

  • Ahn, Jin-Hee;Jung, Chi-Young;Kim, Sang-Hyo
    • Structural Engineering and Mechanics
    • /
    • v.34 no.2
    • /
    • pp.247-275
    • /
    • 2010
  • In this study, experimental, numerical, and analytical approaches were carried out to evaluate the behavior and prestressing effect of prestressed composite beam by external tendon and cover plate. Behavior of prestressed composite beam, load-carrying capacity, effects of prestressing, and ultimate strength were estimated. The contribution of the section increase of the prestressing method using tendon was less than the prestressing method using cover plate. In accordance with numerical and analytical approaches, the ultimate strength of the prestressed composite beam is shown to be the same value because strength is determined according to the plastic resistance moment and the plastic neutral axis; however, both plastic resistance moment and neutral axis are not affected by prestressing force but affected by sectional stiffness of the prestressing member. Based on these approaches, we concluded that the prestressing method using tendon can be useful in applications without an increase in self-weight, and the prestressing method using high-strength cover plate can be applied to reduce the deflection of the composite beam. The prestressing method using high-strength cover plate can also be used to induce prestress of the composite beam in the case of a large deflection due to a smaller sectional stiffness of the composite beam.

Utilizing CFRP and steel plates for repair of damaged RC beams with circular web openings

  • Fayyadh, Moatasem M.;Abed, Mohammed J.
    • Structural Engineering and Mechanics
    • /
    • v.84 no.1
    • /
    • pp.49-61
    • /
    • 2022
  • This paper presents an experimental investigation into the effectiveness of using carbon fibre reinforced polymer (CFRP) and steel plates to repair damaged reinforced concrete (RC) beams with circular web openings at shear zones. It highlights the effectiveness of externally bonded CFRP and steel plates in repairing damaged RC beams by analysing the repaired beams'load capacity, deflection, strain, and failure mode. For the experiment, a total of five beams were used, with one solid beam as a control beam and the other four beams having an opening near the shear zone. Two beams with openings were repaired using inclined and vertical configuration CFRP plates, and the other two were repaired using inclined and vertical configuration steel plates. The results confirm the effectiveness of CFRP and steel plates for repairing damaged RC beams with circular openings. The CFRP and steel plates significantly increase ultimate capacity and reduce deflection under the openings. The inclined configuration of both CFRP and steel plates was more effective than the vertical configuration. Using an inclined configuration not only increases the ultimate capacity of the beams but also changes the mode of failure from shear to flexural.

Effect of Bond Length and Web Anchorage on Flexural Strength in RC Beams Strengthened with CFRP Plate (부착길이와 복부정착이 CFRP판으로 보강된 RC 보의 휨 보강효과에 미치는 영향)

  • 박상렬
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.5
    • /
    • pp.645-652
    • /
    • 2002
  • This paper presents the flexural behavior and strengthening effect of reinforced concrete beams bonded with carbon FRP plate. Parameters involved in this experimental study were plate bond length and sheet web anchorage length. Test beams were strengthened with FRP plate on the soffit and anchored with FRP sheet on the web. In general, strengthened beams with no web anchorage were failed by concrete cover failure along the longitudinal reinforcement. On the other hand, strengthened beams with web anchorage were finally failed by delamination shear failure within concrete after breaking of CFRP sheet wrapping around web. The ultimate load and deflection of strengthened beams increased with an increased bond length of FRP plate. Also, the ultimate load and deflection increased with an increased anchorage length of FRP sheet. Particularly, the strengthened beams with web anchorage maintained high ultimate load resisting capacity until very large deflection. The shape of strain distribution of CFRP plate along beam was very similar to that of bending moment diagram. Therefore, an assumption of constant shear stress in shear span could be possible in the analysis of delamination shear stress of concrete. In the case of full bond length, the ultimate resisting shear stress provided by concrete and FRP sheet Increased with an increase of web anchorage length. In the resisting shear force, a portion of the shear force was provided by FRP anchorage sheet.

Computational analysis and design formula development for the design of curved plates for ships and offshore structures

  • Kim, Joo-Hyun;Park, Joo-Shin;Lee, Kyung-Hun;Kim, Jeong-Hyeon;Kim, Myung-Hyun;Lee, Jae-Myung
    • Structural Engineering and Mechanics
    • /
    • v.49 no.6
    • /
    • pp.705-726
    • /
    • 2014
  • In general, cylindrically curved plates are used in ships and offshore structures such as wind towers, spa structures, fore and aft side shell plating, and bilge circle parts in merchant vessels. In a number of studies, it has been shown that curvature increases the buckling strength of a plate under compressive loading, and the ultimate load-carrying capacity is also expected to increase. In the present paper, a series of elastic and elastoplastic large deflection analyses were performed using the commercial finite element analysis program (MSC.NASTRAN/PATRAN) in order to clarify and examine the fundamental buckling and collapse behaviors of curved plates subjected to combined axial compression and lateral pressure. On the basis of the numerical results, the effects of curvature, the magnitude of the initial deflection, the slenderness ratio, and the aspect ratio on the characteristics of the buckling and collapse behavior of the curved plates are discussed. On the basis of the calculated results, the design formula was developed to predict the buckling and ultimate strengths of curved plates subjected to combined loads in an analytical manner. The buckling strength behaviors were simulated by performing elastic large deflection analyses. The newly developed formulations were applied in order to perform verification analyses for the curved plates by comparing the numerical results, and then, the usefulness of the proposed method was demonstrated.

Response of two-way reinforced concrete voided slabs enhanced by steel fibers and GFRP sheets under monotonic loading

  • Adel A. Al-Azzawi;Shahad H. Mtashar
    • Structural Monitoring and Maintenance
    • /
    • v.10 no.1
    • /
    • pp.1-23
    • /
    • 2023
  • Various efforts have been made to reduce the weight of concrete slabs while preserving their flexural strength. This will result in reducing deflection and allows the utilization of longer spans. The top zone of the slab requires concrete to create the compression block for flexural strength, and the tension zone needs concrete to join with reinforcing for flexural strength. Also, the top and bottom slab faces must be linked to transmit stresses. Voided slab systems were and are still used to make long-span slab buildings lighter. Eight slab specimens of (1000*1000 (1000*1000 mm2) were cast and tested as two-way simply supported slabs in this research. The tested specimens consist of one solid slab and seven voided slabs with the following variables (type of slab solid and voided), thickness of slab (100 and 125 mm), presence of steel fibers (0% and 1%), and the number of GFRP layers). The voids in slabs were made using high-density polystyrene of dimensions (200*200*50 mm) with a central hole of dimensions (50*50*50 mm) at the ineffective concrete zones to give a reduction in weight by (34% to 38%). The slabs were tested as simply supported slabs under partial uniform loading. The results of specimens subjected to monotonic loading show that the combined strengthening by steel fibers and GFRP sheets of the concrete specimen (V-125-2GF-1%) shows the least deflection, deflection (4.6 mm), good ultimate loading capacity (192 MPa), large stiffness at cracking and at ultimate (57 and 41.74) respectively, more ductility (1.44), and high energy absorption (1344.83 kN.mm); so it's the best specimen that can be used as a voided slab under this type of loading.

Ultimate Strength Behavior Analysis on the Ship's Plate under Combined Load(Lateral Pressure Load and Axial Compressive Load) (조합하중을 받는 선체판부재의 최종강도거동 해석)

  • Park Jo-Shin;Ko Jae-Yong;Lee Jun-Kyo;Bae Dong-Kyun
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2005.05a
    • /
    • pp.147-154
    • /
    • 2005
  • The ship plating is generally subjected to combined in-plane load and lateral pressure loads. In-plane loads include axial load and edge shear, which are mainly induced by overall hull girder bending and torsion of the vessel. Lateral pressure is due to water pressure and cargo. These load components are not always applied simultaneously, but more than one can normally exist and interact Hence, for more rational and safe design of ship structures, it is of crucial importance to better understand the interaction relationship of the buckling and ultimate strength for ship plating under combined loads. Actual ship plates are subjected to relatively small water pressure except for the impact load due to slamming and panting etc. The present paper describes an accurate and fast procedure for analyzing the elastic-plastic large deflection behavior up to the ultimate limit state of ship plates under combined loads. In this paper, the ultimate strength characteristics of plates under axial compressive loads and lateral pressure loads are investigated through ANSYS elastic-plastic large deflection finite element analysis with varying lateral pressure load level.

  • PDF

Experimental and finite element analyses of eccentric compression of basalt-fiber reinforced recycled aggregate concrete-filled circular steel tubular stub column

  • Zhang, Xianggang;Zhang, Songpeng;Yang, Junna;Chen, Xu;Zhou, Gaoqiang
    • Steel and Composite Structures
    • /
    • v.42 no.5
    • /
    • pp.617-631
    • /
    • 2022
  • To study the eccentric compressive performance of the basalt-fiber reinforced recycled aggregate concrete (BFRRAC)-filled circular steel tubular stub column, 8 specimens with different replacement ratios of recycled coarse aggregate (RCA), basalt fiber (BF) dosage, strength grade of recycled aggregate concrete (RAC) and eccentricity were tested under eccentric static loading. The failure mode of the specimens was observed, and the relationship curves during the entire loading process were obtained. Further, the load-lateral displacement curve was simulated and verified. The influence of the different parameters on the peak bearing capacity of the specimens was analyzed, and the finite element analysis model was established under eccentric compression. Further, the design-calculation method of the eccentric bearing capacity for the specimens was suggested. It was observed that the strength failure is the ultimate point during the eccentric compression of the BFRRAC-filled circular steel tubular stub column. The shape of the load-lateral deflection curves of all specimens was similar. After the peak load was reached, the lateral deflection in the column was rapidly increased. The peak bearing capacity decreased on enhancing the replacement ratio or eccentric distance, while the core RAC strength exhibited the opposite behavior. The ultimate bearing capacity of the BFRRAC-filled circular steel tubular stub column under eccentric compression calculated based on the limit analysis theory was in good agreement with the experimental values. Further, the finite element model of the eccentric compression of the BFRRAC-filled circular steel tubular stub column could effectively analyze the eccentric mechanical properties.

Stability Design of Steel Frames considering Initial Imperfection based on Second-Order Elastic Analysis (2차 탄성해석을 이용한 강뼈대구조의 초기결함 좌굴설계)

  • Kyung, Yong Soo;Lee, Chang Hwan;Kim, Moon Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4A
    • /
    • pp.465-474
    • /
    • 2008
  • Generally design of frame structures composed of beam-column member is accomplished by stability evaluation of each member considering the effective buckling length. This study selects a member of the smallest non-dimension slenderness ratio using the buckling eigenvalue calculated by the elastic buckling eigen-value analysis and axial force of the each member, and decides the initial deflection quantity reflected geometric and material nonlinearities from a suggested equation on the base of standard strength curve of Korea Bridge Design Code. Second-order elastic analysis applying the initial deflection is executed and the stability of each member is evaluated and decides ultimate strength. Through examples of eight-stories and four-stories plane frame structures, the evaluation of the stability is compared with the existing method and ultimate strength of the suggested method is compared with ultimate strength by the nonlinear inelastic analysis. Through these procedures, the increasing of effective buckling length by elastic buckling eigenvalue analysis is prevented from a new design method that considers initial imperfections. And the validity of this method is proved.

Effect of stud corrosion on stiffness in negative bending moment region of steel-concrete composite beams

  • Yulin Zhan;Wenfeng Huang;Shuoshuo Zhao;Junhu Shao;Dong Shen;Guoqiang Jin
    • Steel and Composite Structures
    • /
    • v.48 no.1
    • /
    • pp.59-71
    • /
    • 2023
  • Corrosion of the headed studs shear connectors is an important factor in the reduction of the durability and mechanical properties of the steel-concrete composite structure. In order to study the effect of stud corrosion on the mechanical properties in the negative moment region of steel-concrete composite beams, the corrosion of stud was carried out by accelerating corrosion method with constant current. Static monotonic loading was adopted to evaluate the cracking load, interface slip, mid-span deflection, and ultimate bearing capacity of four composite beams with varying corrosion rates of headed studs. The effect of stud corrosion on the stiffness of the composite beam's hogging moment zone during normal service stage was thoroughly examined. The results indicate that the cracking load decreased by 50% as the corrosion rate of headed studs increase to 10%. Meanwhile, due to the increase of interface slip and mid-span deflection, the bending stiffness dropped significantly with the same load. In comparison to uncorroded specimens, the secant stiffness of specimens with 0.5 times ultimate load was reduced by 25.9%. However, corrosion of shear studs had no obvious effect on ultimate bending capacity. Based on the experimental results and the theory of steel-concrete interface slip, a method was developed to calculate the bending stiffness in the negative bending moment region of composite beams during normal service stage while taking corrosion of headed studs into account. The validity of the calculation method was demonstrated by data analysis.